| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhssims2.1 |  |-  W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. | 
						
							| 2 |  | hhssims2.3 |  |-  D = ( IndMet ` W ) | 
						
							| 3 |  | hhssims2.2 |  |-  H e. SH | 
						
							| 4 | 1 3 | hhssnv |  |-  W e. NrmCVec | 
						
							| 5 | 1 3 | hhssba |  |-  H = ( BaseSet ` W ) | 
						
							| 6 | 1 3 | hhssvs |  |-  ( -h |` ( H X. H ) ) = ( -v ` W ) | 
						
							| 7 | 1 | hhssnm |  |-  ( normh |` H ) = ( normCV ` W ) | 
						
							| 8 | 5 6 7 2 | imsdval |  |-  ( ( W e. NrmCVec /\ A e. H /\ B e. H ) -> ( A D B ) = ( ( normh |` H ) ` ( A ( -h |` ( H X. H ) ) B ) ) ) | 
						
							| 9 | 4 8 | mp3an1 |  |-  ( ( A e. H /\ B e. H ) -> ( A D B ) = ( ( normh |` H ) ` ( A ( -h |` ( H X. H ) ) B ) ) ) | 
						
							| 10 |  | ovres |  |-  ( ( A e. H /\ B e. H ) -> ( A ( -h |` ( H X. H ) ) B ) = ( A -h B ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( A e. H /\ B e. H ) -> ( ( normh |` H ) ` ( A ( -h |` ( H X. H ) ) B ) ) = ( ( normh |` H ) ` ( A -h B ) ) ) | 
						
							| 12 |  | shsubcl |  |-  ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) e. H ) | 
						
							| 13 | 3 12 | mp3an1 |  |-  ( ( A e. H /\ B e. H ) -> ( A -h B ) e. H ) | 
						
							| 14 |  | fvres |  |-  ( ( A -h B ) e. H -> ( ( normh |` H ) ` ( A -h B ) ) = ( normh ` ( A -h B ) ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( A e. H /\ B e. H ) -> ( ( normh |` H ) ` ( A -h B ) ) = ( normh ` ( A -h B ) ) ) | 
						
							| 16 | 9 11 15 | 3eqtrd |  |-  ( ( A e. H /\ B e. H ) -> ( A D B ) = ( normh ` ( A -h B ) ) ) |