Step |
Hyp |
Ref |
Expression |
1 |
|
hhssims2.1 |
β’ π = β¨ β¨ ( +β βΎ ( π» Γ π» ) ) , ( Β·β βΎ ( β Γ π» ) ) β© , ( normβ βΎ π» ) β© |
2 |
|
hhssims2.3 |
β’ π· = ( IndMet β π ) |
3 |
|
hhsscms.3 |
β’ π» β Cβ |
4 |
|
eqid |
β’ ( MetOpen β π· ) = ( MetOpen β π· ) |
5 |
3
|
chshii |
β’ π» β Sβ |
6 |
1 2 5
|
hhssmet |
β’ π· β ( Met β π» ) |
7 |
|
simpl |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π β ( Cau β π· ) ) |
8 |
1 2 5
|
hhssims2 |
β’ π· = ( ( normβ β ββ ) βΎ ( π» Γ π» ) ) |
9 |
8
|
fveq2i |
β’ ( Cau β π· ) = ( Cau β ( ( normβ β ββ ) βΎ ( π» Γ π» ) ) ) |
10 |
7 9
|
eleqtrdi |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π β ( Cau β ( ( normβ β ββ ) βΎ ( π» Γ π» ) ) ) ) |
11 |
|
eqid |
β’ ( normβ β ββ ) = ( normβ β ββ ) |
12 |
11
|
hilxmet |
β’ ( normβ β ββ ) β ( βMet β β ) |
13 |
|
simpr |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π : β βΆ π» ) |
14 |
|
causs |
β’ ( ( ( normβ β ββ ) β ( βMet β β ) β§ π : β βΆ π» ) β ( π β ( Cau β ( normβ β ββ ) ) β π β ( Cau β ( ( normβ β ββ ) βΎ ( π» Γ π» ) ) ) ) ) |
15 |
12 13 14
|
sylancr |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β ( π β ( Cau β ( normβ β ββ ) ) β π β ( Cau β ( ( normβ β ββ ) βΎ ( π» Γ π» ) ) ) ) ) |
16 |
10 15
|
mpbird |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π β ( Cau β ( normβ β ββ ) ) ) |
17 |
3
|
chssii |
β’ π» β β |
18 |
|
fss |
β’ ( ( π : β βΆ π» β§ π» β β ) β π : β βΆ β ) |
19 |
13 17 18
|
sylancl |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π : β βΆ β ) |
20 |
|
ax-hilex |
β’ β β V |
21 |
|
nnex |
β’ β β V |
22 |
20 21
|
elmap |
β’ ( π β ( β βm β ) β π : β βΆ β ) |
23 |
19 22
|
sylibr |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π β ( β βm β ) ) |
24 |
|
eqid |
β’ β¨ β¨ +β , Β·β β© , normβ β© = β¨ β¨ +β , Β·β β© , normβ β© |
25 |
24 11
|
hhims |
β’ ( normβ β ββ ) = ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) |
26 |
24 25
|
hhcau |
β’ Cauchy = ( ( Cau β ( normβ β ββ ) ) β© ( β βm β ) ) |
27 |
26
|
elin2 |
β’ ( π β Cauchy β ( π β ( Cau β ( normβ β ββ ) ) β§ π β ( β βm β ) ) ) |
28 |
16 23 27
|
sylanbrc |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π β Cauchy ) |
29 |
|
ax-hcompl |
β’ ( π β Cauchy β β π₯ β β π βπ£ π₯ ) |
30 |
|
vex |
β’ π β V |
31 |
|
vex |
β’ π₯ β V |
32 |
30 31
|
breldm |
β’ ( π βπ£ π₯ β π β dom βπ£ ) |
33 |
32
|
rexlimivw |
β’ ( β π₯ β β π βπ£ π₯ β π β dom βπ£ ) |
34 |
28 29 33
|
3syl |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π β dom βπ£ ) |
35 |
|
hlimf |
β’ βπ£ : dom βπ£ βΆ β |
36 |
|
ffun |
β’ ( βπ£ : dom βπ£ βΆ β β Fun βπ£ ) |
37 |
|
funfvbrb |
β’ ( Fun βπ£ β ( π β dom βπ£ β π βπ£ ( βπ£ β π ) ) ) |
38 |
35 36 37
|
mp2b |
β’ ( π β dom βπ£ β π βπ£ ( βπ£ β π ) ) |
39 |
34 38
|
sylib |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π βπ£ ( βπ£ β π ) ) |
40 |
|
eqid |
β’ ( MetOpen β ( normβ β ββ ) ) = ( MetOpen β ( normβ β ββ ) ) |
41 |
24 25 40
|
hhlm |
β’ βπ£ = ( ( βπ‘ β ( MetOpen β ( normβ β ββ ) ) ) βΎ ( β βm β ) ) |
42 |
|
resss |
β’ ( ( βπ‘ β ( MetOpen β ( normβ β ββ ) ) ) βΎ ( β βm β ) ) β ( βπ‘ β ( MetOpen β ( normβ β ββ ) ) ) |
43 |
41 42
|
eqsstri |
β’ βπ£ β ( βπ‘ β ( MetOpen β ( normβ β ββ ) ) ) |
44 |
43
|
ssbri |
β’ ( π βπ£ ( βπ£ β π ) β π ( βπ‘ β ( MetOpen β ( normβ β ββ ) ) ) ( βπ£ β π ) ) |
45 |
39 44
|
syl |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π ( βπ‘ β ( MetOpen β ( normβ β ββ ) ) ) ( βπ£ β π ) ) |
46 |
8 40 4
|
metrest |
β’ ( ( ( normβ β ββ ) β ( βMet β β ) β§ π» β β ) β ( ( MetOpen β ( normβ β ββ ) ) βΎt π» ) = ( MetOpen β π· ) ) |
47 |
12 17 46
|
mp2an |
β’ ( ( MetOpen β ( normβ β ββ ) ) βΎt π» ) = ( MetOpen β π· ) |
48 |
47
|
eqcomi |
β’ ( MetOpen β π· ) = ( ( MetOpen β ( normβ β ββ ) ) βΎt π» ) |
49 |
|
nnuz |
β’ β = ( β€β₯ β 1 ) |
50 |
3
|
a1i |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π» β Cβ ) |
51 |
40
|
mopntop |
β’ ( ( normβ β ββ ) β ( βMet β β ) β ( MetOpen β ( normβ β ββ ) ) β Top ) |
52 |
12 51
|
mp1i |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β ( MetOpen β ( normβ β ββ ) ) β Top ) |
53 |
|
fvex |
β’ ( βπ£ β π ) β V |
54 |
53
|
chlimi |
β’ ( ( π» β Cβ β§ π : β βΆ π» β§ π βπ£ ( βπ£ β π ) ) β ( βπ£ β π ) β π» ) |
55 |
50 13 39 54
|
syl3anc |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β ( βπ£ β π ) β π» ) |
56 |
|
1zzd |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β 1 β β€ ) |
57 |
48 49 50 52 55 56 13
|
lmss |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β ( π ( βπ‘ β ( MetOpen β ( normβ β ββ ) ) ) ( βπ£ β π ) β π ( βπ‘ β ( MetOpen β π· ) ) ( βπ£ β π ) ) ) |
58 |
45 57
|
mpbid |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π ( βπ‘ β ( MetOpen β π· ) ) ( βπ£ β π ) ) |
59 |
30 53
|
breldm |
β’ ( π ( βπ‘ β ( MetOpen β π· ) ) ( βπ£ β π ) β π β dom ( βπ‘ β ( MetOpen β π· ) ) ) |
60 |
58 59
|
syl |
β’ ( ( π β ( Cau β π· ) β§ π : β βΆ π» ) β π β dom ( βπ‘ β ( MetOpen β π· ) ) ) |
61 |
4 6 60
|
iscmet3i |
β’ π· β ( CMet β π» ) |