| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caufpm |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 2 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
| 3 |
|
cnex |
⊢ ℂ ∈ V |
| 4 |
|
elpmg |
⊢ ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) |
| 5 |
2 3 4
|
sylancl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) |
| 6 |
5
|
biimpa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) |
| 7 |
1 6
|
syldan |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) |
| 8 |
|
rnss |
⊢ ( 𝐹 ⊆ ( ℂ × 𝑋 ) → ran 𝐹 ⊆ ran ( ℂ × 𝑋 ) ) |
| 9 |
7 8
|
simpl2im |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ran 𝐹 ⊆ ran ( ℂ × 𝑋 ) ) |
| 10 |
|
rnxpss |
⊢ ran ( ℂ × 𝑋 ) ⊆ 𝑋 |
| 11 |
9 10
|
sstrdi |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ran 𝐹 ⊆ 𝑋 ) |
| 12 |
11
|
adantlr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ran 𝐹 ⊆ 𝑋 ) |
| 13 |
|
frn |
⊢ ( 𝐹 : ℕ ⟶ 𝑌 → ran 𝐹 ⊆ 𝑌 ) |
| 14 |
13
|
ad2antlr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ran 𝐹 ⊆ 𝑌 ) |
| 15 |
12 14
|
ssind |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) |
| 16 |
15
|
ex |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) → ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) ) |
| 17 |
|
xmetres |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 18 |
|
caufpm |
⊢ ( ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ) |
| 19 |
17 18
|
sylan |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ) |
| 20 |
|
inex1g |
⊢ ( 𝑋 ∈ dom ∞Met → ( 𝑋 ∩ 𝑌 ) ∈ V ) |
| 21 |
2 20
|
syl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∩ 𝑌 ) ∈ V ) |
| 22 |
|
elpmg |
⊢ ( ( ( 𝑋 ∩ 𝑌 ) ∈ V ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) ) ) |
| 23 |
21 3 22
|
sylancl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) ) ) |
| 24 |
23
|
biimpa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) ) |
| 25 |
19 24
|
syldan |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) ) |
| 26 |
|
rnss |
⊢ ( 𝐹 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) → ran 𝐹 ⊆ ran ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) |
| 27 |
25 26
|
simpl2im |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ran 𝐹 ⊆ ran ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) |
| 28 |
|
rnxpss |
⊢ ran ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ⊆ ( 𝑋 ∩ 𝑌 ) |
| 29 |
27 28
|
sstrdi |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) |
| 30 |
29
|
ex |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) → ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) → ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) ) |
| 32 |
|
ffn |
⊢ ( 𝐹 : ℕ ⟶ 𝑌 → 𝐹 Fn ℕ ) |
| 33 |
|
df-f |
⊢ ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ↔ ( 𝐹 Fn ℕ ∧ ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) ) |
| 34 |
33
|
simplbi2 |
⊢ ( 𝐹 Fn ℕ → ( ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) → 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) ) |
| 35 |
32 34
|
syl |
⊢ ( 𝐹 : ℕ ⟶ 𝑌 → ( ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) → 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) ) |
| 36 |
|
inss2 |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 |
| 37 |
36
|
a1i |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 ) |
| 38 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ∧ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 ) → 𝐹 : ℕ ⟶ 𝑌 ) |
| 39 |
37 38
|
sylan2 |
⊢ ( ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝐹 : ℕ ⟶ 𝑌 ) |
| 40 |
39
|
ancoms |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → 𝐹 : ℕ ⟶ 𝑌 ) |
| 41 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
| 43 |
|
eluznn |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) → 𝑧 ∈ ℕ ) |
| 44 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑧 ∈ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 ) |
| 45 |
43 44
|
sylan2 |
⊢ ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 ) |
| 46 |
45
|
anassrs |
⊢ ( ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 ) |
| 47 |
42 46
|
ovresd |
⊢ ( ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) ) |
| 48 |
47
|
breq1d |
⊢ ( ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 49 |
48
|
ralbidva |
⊢ ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ↔ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 50 |
49
|
rexbidva |
⊢ ( 𝐹 : ℕ ⟶ 𝑌 → ( ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 51 |
50
|
ralbidv |
⊢ ( 𝐹 : ℕ ⟶ 𝑌 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 52 |
40 51
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 53 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 54 |
17
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 55 |
|
1zzd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → 1 ∈ ℤ ) |
| 56 |
|
eqidd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝑧 ∈ ℕ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 57 |
|
eqidd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 58 |
|
simpr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) |
| 59 |
53 54 55 56 57 58
|
iscauf |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → ( 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 60 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 61 |
|
id |
⊢ ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) → 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) |
| 62 |
|
inss1 |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 |
| 63 |
62
|
a1i |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 ) |
| 64 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ∧ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 ) → 𝐹 : ℕ ⟶ 𝑋 ) |
| 65 |
61 63 64
|
syl2anr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
| 66 |
53 60 55 56 57 65
|
iscauf |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 67 |
52 59 66
|
3bitr4rd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| 68 |
67
|
ex |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) ) |
| 69 |
35 68
|
sylan9r |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) → ( ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) ) |
| 70 |
16 31 69
|
pm5.21ndd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |