Metamath Proof Explorer


Theorem hhxmet

Description: The induced metric of Hilbert space. (Contributed by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
hhims2.2 𝐷 = ( IndMet ‘ 𝑈 )
Assertion hhxmet 𝐷 ∈ ( ∞Met ‘ ℋ )

Proof

Step Hyp Ref Expression
1 hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hhims2.2 𝐷 = ( IndMet ‘ 𝑈 )
3 1 2 hhmet 𝐷 ∈ ( Met ‘ ℋ )
4 metxmet ( 𝐷 ∈ ( Met ‘ ℋ ) → 𝐷 ∈ ( ∞Met ‘ ℋ ) )
5 3 4 ax-mp 𝐷 ∈ ( ∞Met ‘ ℋ )