Description: The induced metric of Hilbert space. (Contributed by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
hhims2.2 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
Assertion | hhxmet | ⊢ 𝐷 ∈ ( ∞Met ‘ ℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
2 | hhims2.2 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
3 | 1 2 | hhmet | ⊢ 𝐷 ∈ ( Met ‘ ℋ ) |
4 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ ℋ ) → 𝐷 ∈ ( ∞Met ‘ ℋ ) ) | |
5 | 3 4 | ax-mp | ⊢ 𝐷 ∈ ( ∞Met ‘ ℋ ) |