Metamath Proof Explorer


Theorem hhxmet

Description: The induced metric of Hilbert space. (Contributed by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1 U=+norm
hhims2.2 D=IndMetU
Assertion hhxmet D∞Met

Proof

Step Hyp Ref Expression
1 hhnv.1 U=+norm
2 hhims2.2 D=IndMetU
3 1 2 hhmet DMet
4 metxmet DMetD∞Met
5 3 4 ax-mp D∞Met