Description: Associative law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlipass.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| hlipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| hlipass.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | hlipass | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑆 𝐵 ) 𝑃 𝐶 ) = ( 𝐴 · ( 𝐵 𝑃 𝐶 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlipass.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | hlipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | hlipass.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | hlph | ⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD ) | |
| 5 | 1 2 3 | dipass | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑆 𝐵 ) 𝑃 𝐶 ) = ( 𝐴 · ( 𝐵 𝑃 𝐶 ) ) ) | 
| 6 | 4 5 | sylan | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑆 𝐵 ) 𝑃 𝐶 ) = ( 𝐴 · ( 𝐵 𝑃 𝐶 ) ) ) |