| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlipgt0.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | hlipgt0.5 | ⊢ 𝑍  =  ( 0vec ‘ 𝑈 ) | 
						
							| 3 |  | hlipgt0.7 | ⊢ 𝑃  =  ( ·𝑖OLD ‘ 𝑈 ) | 
						
							| 4 |  | hlnv | ⊢ ( 𝑈  ∈  CHilOLD  →  𝑈  ∈  NrmCVec ) | 
						
							| 5 |  | eqid | ⊢ ( normCV ‘ 𝑈 )  =  ( normCV ‘ 𝑈 ) | 
						
							| 6 | 1 5 | nvcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐴  ≠  𝑍 )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 8 | 1 2 5 | nvz | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 )  =  0  ↔  𝐴  =  𝑍 ) ) | 
						
							| 9 | 8 | biimpd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 )  =  0  →  𝐴  =  𝑍 ) ) | 
						
							| 10 | 9 | necon3d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ≠  𝑍  →  ( ( normCV ‘ 𝑈 ) ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 11 | 10 | 3impia | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐴  ≠  𝑍 )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝐴 )  ≠  0 ) | 
						
							| 12 | 7 11 | sqgt0d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐴  ≠  𝑍 )  →  0  <  ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 13 | 1 5 3 | ipidsq | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝑃 𝐴 )  =  ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 14 | 13 | 3adant3 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐴  ≠  𝑍 )  →  ( 𝐴 𝑃 𝐴 )  =  ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 15 | 12 14 | breqtrrd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐴  ≠  𝑍 )  →  0  <  ( 𝐴 𝑃 𝐴 ) ) | 
						
							| 16 | 4 15 | syl3an1 | ⊢ ( ( 𝑈  ∈  CHilOLD  ∧  𝐴  ∈  𝑋  ∧  𝐴  ≠  𝑍 )  →  0  <  ( 𝐴 𝑃 𝐴 ) ) |