| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlipgt0.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
hlipgt0.5 |
|- Z = ( 0vec ` U ) |
| 3 |
|
hlipgt0.7 |
|- P = ( .iOLD ` U ) |
| 4 |
|
hlnv |
|- ( U e. CHilOLD -> U e. NrmCVec ) |
| 5 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
| 6 |
1 5
|
nvcl |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( normCV ` U ) ` A ) e. RR ) |
| 7 |
6
|
3adant3 |
|- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( ( normCV ` U ) ` A ) e. RR ) |
| 8 |
1 2 5
|
nvz |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` A ) = 0 <-> A = Z ) ) |
| 9 |
8
|
biimpd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` A ) = 0 -> A = Z ) ) |
| 10 |
9
|
necon3d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A =/= Z -> ( ( normCV ` U ) ` A ) =/= 0 ) ) |
| 11 |
10
|
3impia |
|- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( ( normCV ` U ) ` A ) =/= 0 ) |
| 12 |
7 11
|
sqgt0d |
|- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> 0 < ( ( ( normCV ` U ) ` A ) ^ 2 ) ) |
| 13 |
1 5 3
|
ipidsq |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( ( normCV ` U ) ` A ) ^ 2 ) ) |
| 14 |
13
|
3adant3 |
|- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( A P A ) = ( ( ( normCV ` U ) ` A ) ^ 2 ) ) |
| 15 |
12 14
|
breqtrrd |
|- ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> 0 < ( A P A ) ) |
| 16 |
4 15
|
syl3an1 |
|- ( ( U e. CHilOLD /\ A e. X /\ A =/= Z ) -> 0 < ( A P A ) ) |