| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlipgt0.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | hlipgt0.5 |  |-  Z = ( 0vec ` U ) | 
						
							| 3 |  | hlipgt0.7 |  |-  P = ( .iOLD ` U ) | 
						
							| 4 |  | hlnv |  |-  ( U e. CHilOLD -> U e. NrmCVec ) | 
						
							| 5 |  | eqid |  |-  ( normCV ` U ) = ( normCV ` U ) | 
						
							| 6 | 1 5 | nvcl |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( normCV ` U ) ` A ) e. RR ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( ( normCV ` U ) ` A ) e. RR ) | 
						
							| 8 | 1 2 5 | nvz |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` A ) = 0 <-> A = Z ) ) | 
						
							| 9 | 8 | biimpd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` A ) = 0 -> A = Z ) ) | 
						
							| 10 | 9 | necon3d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A =/= Z -> ( ( normCV ` U ) ` A ) =/= 0 ) ) | 
						
							| 11 | 10 | 3impia |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( ( normCV ` U ) ` A ) =/= 0 ) | 
						
							| 12 | 7 11 | sqgt0d |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> 0 < ( ( ( normCV ` U ) ` A ) ^ 2 ) ) | 
						
							| 13 | 1 5 3 | ipidsq |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( ( normCV ` U ) ` A ) ^ 2 ) ) | 
						
							| 14 | 13 | 3adant3 |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( A P A ) = ( ( ( normCV ` U ) ` A ) ^ 2 ) ) | 
						
							| 15 | 12 14 | breqtrrd |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> 0 < ( A P A ) ) | 
						
							| 16 | 4 15 | syl3an1 |  |-  ( ( U e. CHilOLD /\ A e. X /\ A =/= Z ) -> 0 < ( A P A ) ) |