Description: Completeness of a Hilbert space. (Contributed by NM, 8-Sep-2007) (Revised by Mario Carneiro, 9-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlcompl.1 | |- D = ( IndMet ` U ) |
|
hlcompl.2 | |- J = ( MetOpen ` D ) |
||
Assertion | hlcompl | |- ( ( U e. CHilOLD /\ F e. ( Cau ` D ) ) -> F e. dom ( ~~>t ` J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcompl.1 | |- D = ( IndMet ` U ) |
|
2 | hlcompl.2 | |- J = ( MetOpen ` D ) |
|
3 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
4 | 3 1 | hlcmet | |- ( U e. CHilOLD -> D e. ( CMet ` ( BaseSet ` U ) ) ) |
5 | 2 | cmetcau | |- ( ( D e. ( CMet ` ( BaseSet ` U ) ) /\ F e. ( Cau ` D ) ) -> F e. dom ( ~~>t ` J ) ) |
6 | 4 5 | sylan | |- ( ( U e. CHilOLD /\ F e. ( Cau ` D ) ) -> F e. dom ( ~~>t ` J ) ) |