Metamath Proof Explorer


Theorem hlcompl

Description: Completeness of a Hilbert space. (Contributed by NM, 8-Sep-2007) (Revised by Mario Carneiro, 9-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hlcompl.1
|- D = ( IndMet ` U )
hlcompl.2
|- J = ( MetOpen ` D )
Assertion hlcompl
|- ( ( U e. CHilOLD /\ F e. ( Cau ` D ) ) -> F e. dom ( ~~>t ` J ) )

Proof

Step Hyp Ref Expression
1 hlcompl.1
 |-  D = ( IndMet ` U )
2 hlcompl.2
 |-  J = ( MetOpen ` D )
3 eqid
 |-  ( BaseSet ` U ) = ( BaseSet ` U )
4 3 1 hlcmet
 |-  ( U e. CHilOLD -> D e. ( CMet ` ( BaseSet ` U ) ) )
5 2 cmetcau
 |-  ( ( D e. ( CMet ` ( BaseSet ` U ) ) /\ F e. ( Cau ` D ) ) -> F e. dom ( ~~>t ` J ) )
6 4 5 sylan
 |-  ( ( U e. CHilOLD /\ F e. ( Cau ` D ) ) -> F e. dom ( ~~>t ` J ) )