Description: Hilbert space scalar multiplication by one. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlmulf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| hlmulf.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| Assertion | hlmulid | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlmulf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | hlmulf.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | hlnv | ⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec ) | |
| 4 | 1 2 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) | 
| 5 | 3 4 | sylan | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |