Step |
Hyp |
Ref |
Expression |
1 |
|
hoidifhspval3.d |
⊢ 𝐷 = ( 𝑥 ∈ ℝ ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑥 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑥 ) , ( 𝑎 ‘ 𝑘 ) ) ) ) ) |
2 |
|
hoidifhspval3.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
3 |
|
hoidifhspval3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
4 |
|
hoidifhspval3.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
5 |
|
hoidifhspval3.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑋 ) |
6 |
1 2 3 4
|
hoidifhspval2 |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝑌 ) ‘ 𝐴 ) = ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) , ( 𝐴 ‘ 𝑘 ) , 𝑌 ) , ( 𝐴 ‘ 𝑘 ) ) ) ) |
7 |
|
eqeq1 |
⊢ ( 𝑘 = 𝐽 → ( 𝑘 = 𝐾 ↔ 𝐽 = 𝐾 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑘 = 𝐽 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝐽 ) ) |
9 |
8
|
breq2d |
⊢ ( 𝑘 = 𝐽 → ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) ↔ 𝑌 ≤ ( 𝐴 ‘ 𝐽 ) ) ) |
10 |
9 8
|
ifbieq1d |
⊢ ( 𝑘 = 𝐽 → if ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) , ( 𝐴 ‘ 𝑘 ) , 𝑌 ) = if ( 𝑌 ≤ ( 𝐴 ‘ 𝐽 ) , ( 𝐴 ‘ 𝐽 ) , 𝑌 ) ) |
11 |
7 10 8
|
ifbieq12d |
⊢ ( 𝑘 = 𝐽 → if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) , ( 𝐴 ‘ 𝑘 ) , 𝑌 ) , ( 𝐴 ‘ 𝑘 ) ) = if ( 𝐽 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝐽 ) , ( 𝐴 ‘ 𝐽 ) , 𝑌 ) , ( 𝐴 ‘ 𝐽 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) , ( 𝐴 ‘ 𝑘 ) , 𝑌 ) , ( 𝐴 ‘ 𝑘 ) ) = if ( 𝐽 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝐽 ) , ( 𝐴 ‘ 𝐽 ) , 𝑌 ) , ( 𝐴 ‘ 𝐽 ) ) ) |
13 |
|
fvexd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐽 ) ∈ V ) |
14 |
2
|
elexd |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
15 |
13 14
|
ifcld |
⊢ ( 𝜑 → if ( 𝑌 ≤ ( 𝐴 ‘ 𝐽 ) , ( 𝐴 ‘ 𝐽 ) , 𝑌 ) ∈ V ) |
16 |
15 13
|
ifcld |
⊢ ( 𝜑 → if ( 𝐽 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝐽 ) , ( 𝐴 ‘ 𝐽 ) , 𝑌 ) , ( 𝐴 ‘ 𝐽 ) ) ∈ V ) |
17 |
6 12 5 16
|
fvmptd |
⊢ ( 𝜑 → ( ( ( 𝐷 ‘ 𝑌 ) ‘ 𝐴 ) ‘ 𝐽 ) = if ( 𝐽 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝐽 ) , ( 𝐴 ‘ 𝐽 ) , 𝑌 ) , ( 𝐴 ‘ 𝐽 ) ) ) |