Step |
Hyp |
Ref |
Expression |
1 |
|
hoidifhspval2.d |
⊢ 𝐷 = ( 𝑥 ∈ ℝ ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑥 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑥 ) , ( 𝑎 ‘ 𝑘 ) ) ) ) ) |
2 |
|
hoidifhspval2.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
3 |
|
hoidifhspval2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
4 |
|
hoidifhspval2.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
5 |
1 2
|
hoidifhspval |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑌 ) = ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) , ( 𝑎 ‘ 𝑘 ) ) ) ) ) |
6 |
|
fveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
7 |
6
|
breq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) ↔ 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) ) ) |
8 |
7 6
|
ifbieq1d |
⊢ ( 𝑎 = 𝐴 → if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) = if ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) , ( 𝐴 ‘ 𝑘 ) , 𝑌 ) ) |
9 |
8 6
|
ifeq12d |
⊢ ( 𝑎 = 𝐴 → if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) , ( 𝑎 ‘ 𝑘 ) ) = if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) , ( 𝐴 ‘ 𝑘 ) , 𝑌 ) , ( 𝐴 ‘ 𝑘 ) ) ) |
10 |
9
|
mpteq2dv |
⊢ ( 𝑎 = 𝐴 → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) , ( 𝑎 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) , ( 𝐴 ‘ 𝑘 ) , 𝑌 ) , ( 𝐴 ‘ 𝑘 ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 = 𝐴 ) → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) , ( 𝑎 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) , ( 𝐴 ‘ 𝑘 ) , 𝑌 ) , ( 𝐴 ‘ 𝑘 ) ) ) ) |
12 |
|
reex |
⊢ ℝ ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
14 |
13 3
|
jca |
⊢ ( 𝜑 → ( ℝ ∈ V ∧ 𝑋 ∈ 𝑉 ) ) |
15 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐴 : 𝑋 ⟶ ℝ ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐴 : 𝑋 ⟶ ℝ ) ) |
17 |
4 16
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( ℝ ↑m 𝑋 ) ) |
18 |
|
mptexg |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) , ( 𝐴 ‘ 𝑘 ) , 𝑌 ) , ( 𝐴 ‘ 𝑘 ) ) ) ∈ V ) |
19 |
3 18
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) , ( 𝐴 ‘ 𝑘 ) , 𝑌 ) , ( 𝐴 ‘ 𝑘 ) ) ) ∈ V ) |
20 |
5 11 17 19
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝑌 ) ‘ 𝐴 ) = ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝐴 ‘ 𝑘 ) , ( 𝐴 ‘ 𝑘 ) , 𝑌 ) , ( 𝐴 ‘ 𝑘 ) ) ) ) |