| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidifhspval2.d | ⊢ 𝐷  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( 𝑘  ∈  𝑋  ↦  if ( 𝑘  =  𝐾 ,  if ( 𝑥  ≤  ( 𝑎 ‘ 𝑘 ) ,  ( 𝑎 ‘ 𝑘 ) ,  𝑥 ) ,  ( 𝑎 ‘ 𝑘 ) ) ) ) ) | 
						
							| 2 |  | hoidifhspval2.y | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 3 |  | hoidifhspval2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 4 |  | hoidifhspval2.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 5 | 1 2 | hoidifhspval | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑌 )  =  ( 𝑎  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( 𝑘  ∈  𝑋  ↦  if ( 𝑘  =  𝐾 ,  if ( 𝑌  ≤  ( 𝑎 ‘ 𝑘 ) ,  ( 𝑎 ‘ 𝑘 ) ,  𝑌 ) ,  ( 𝑎 ‘ 𝑘 ) ) ) ) ) | 
						
							| 6 |  | fveq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 7 | 6 | breq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑌  ≤  ( 𝑎 ‘ 𝑘 )  ↔  𝑌  ≤  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 8 | 7 6 | ifbieq1d | ⊢ ( 𝑎  =  𝐴  →  if ( 𝑌  ≤  ( 𝑎 ‘ 𝑘 ) ,  ( 𝑎 ‘ 𝑘 ) ,  𝑌 )  =  if ( 𝑌  ≤  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐴 ‘ 𝑘 ) ,  𝑌 ) ) | 
						
							| 9 | 8 6 | ifeq12d | ⊢ ( 𝑎  =  𝐴  →  if ( 𝑘  =  𝐾 ,  if ( 𝑌  ≤  ( 𝑎 ‘ 𝑘 ) ,  ( 𝑎 ‘ 𝑘 ) ,  𝑌 ) ,  ( 𝑎 ‘ 𝑘 ) )  =  if ( 𝑘  =  𝐾 ,  if ( 𝑌  ≤  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐴 ‘ 𝑘 ) ,  𝑌 ) ,  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 10 | 9 | mpteq2dv | ⊢ ( 𝑎  =  𝐴  →  ( 𝑘  ∈  𝑋  ↦  if ( 𝑘  =  𝐾 ,  if ( 𝑌  ≤  ( 𝑎 ‘ 𝑘 ) ,  ( 𝑎 ‘ 𝑘 ) ,  𝑌 ) ,  ( 𝑎 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  𝑋  ↦  if ( 𝑘  =  𝐾 ,  if ( 𝑌  ≤  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐴 ‘ 𝑘 ) ,  𝑌 ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  =  𝐴 )  →  ( 𝑘  ∈  𝑋  ↦  if ( 𝑘  =  𝐾 ,  if ( 𝑌  ≤  ( 𝑎 ‘ 𝑘 ) ,  ( 𝑎 ‘ 𝑘 ) ,  𝑌 ) ,  ( 𝑎 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  𝑋  ↦  if ( 𝑘  =  𝐾 ,  if ( 𝑌  ≤  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐴 ‘ 𝑘 ) ,  𝑌 ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ) | 
						
							| 12 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 14 | 13 3 | jca | ⊢ ( 𝜑  →  ( ℝ  ∈  V  ∧  𝑋  ∈  𝑉 ) ) | 
						
							| 15 |  | elmapg | ⊢ ( ( ℝ  ∈  V  ∧  𝑋  ∈  𝑉 )  →  ( 𝐴  ∈  ( ℝ  ↑m  𝑋 )  ↔  𝐴 : 𝑋 ⟶ ℝ ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( ℝ  ↑m  𝑋 )  ↔  𝐴 : 𝑋 ⟶ ℝ ) ) | 
						
							| 17 | 4 16 | mpbird | ⊢ ( 𝜑  →  𝐴  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 18 |  | mptexg | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑘  ∈  𝑋  ↦  if ( 𝑘  =  𝐾 ,  if ( 𝑌  ≤  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐴 ‘ 𝑘 ) ,  𝑌 ) ,  ( 𝐴 ‘ 𝑘 ) ) )  ∈  V ) | 
						
							| 19 | 3 18 | syl | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑋  ↦  if ( 𝑘  =  𝐾 ,  if ( 𝑌  ≤  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐴 ‘ 𝑘 ) ,  𝑌 ) ,  ( 𝐴 ‘ 𝑘 ) ) )  ∈  V ) | 
						
							| 20 | 5 11 17 19 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 𝑌 ) ‘ 𝐴 )  =  ( 𝑘  ∈  𝑋  ↦  if ( 𝑘  =  𝐾 ,  if ( 𝑌  ≤  ( 𝐴 ‘ 𝑘 ) ,  ( 𝐴 ‘ 𝑘 ) ,  𝑌 ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ) |