| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoidifhspval.d |
⊢ 𝐷 = ( 𝑥 ∈ ℝ ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑥 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑥 ) , ( 𝑎 ‘ 𝑘 ) ) ) ) ) |
| 2 |
|
hoidifhspval.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 3 |
|
breq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ≤ ( 𝑎 ‘ 𝑘 ) ↔ 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) ) ) |
| 4 |
|
id |
⊢ ( 𝑥 = 𝑌 → 𝑥 = 𝑌 ) |
| 5 |
3 4
|
ifbieq2d |
⊢ ( 𝑥 = 𝑌 → if ( 𝑥 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑥 ) = if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) ) |
| 6 |
5
|
ifeq1d |
⊢ ( 𝑥 = 𝑌 → if ( 𝑘 = 𝐾 , if ( 𝑥 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑥 ) , ( 𝑎 ‘ 𝑘 ) ) = if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) , ( 𝑎 ‘ 𝑘 ) ) ) |
| 7 |
6
|
mpteq2dv |
⊢ ( 𝑥 = 𝑌 → ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑥 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑥 ) , ( 𝑎 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) , ( 𝑎 ‘ 𝑘 ) ) ) ) |
| 8 |
7
|
mpteq2dv |
⊢ ( 𝑥 = 𝑌 → ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑥 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑥 ) , ( 𝑎 ‘ 𝑘 ) ) ) ) = ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) , ( 𝑎 ‘ 𝑘 ) ) ) ) ) |
| 9 |
|
ovex |
⊢ ( ℝ ↑m 𝑋 ) ∈ V |
| 10 |
9
|
mptex |
⊢ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) , ( 𝑎 ‘ 𝑘 ) ) ) ) ∈ V |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) , ( 𝑎 ‘ 𝑘 ) ) ) ) ∈ V ) |
| 12 |
1 8 2 11
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑌 ) = ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑘 ∈ 𝑋 ↦ if ( 𝑘 = 𝐾 , if ( 𝑌 ≤ ( 𝑎 ‘ 𝑘 ) , ( 𝑎 ‘ 𝑘 ) , 𝑌 ) , ( 𝑎 ‘ 𝑘 ) ) ) ) ) |