Step |
Hyp |
Ref |
Expression |
1 |
|
hspval.h |
⊢ 𝐻 = ( 𝑥 ∈ Fin ↦ ( 𝑖 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑥 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
2 |
|
hspval.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hspval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) |
4 |
|
hspval.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
5 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
6 |
|
eqidd |
⊢ ( 𝑥 = 𝑋 → ℝ = ℝ ) |
7 |
|
ixpeq1 |
⊢ ( 𝑥 = 𝑋 → X 𝑘 ∈ 𝑥 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) = X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) |
8 |
5 6 7
|
mpoeq123dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑖 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑥 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) = ( 𝑖 ∈ 𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
9 |
|
reex |
⊢ ℝ ∈ V |
10 |
9
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
11 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) = ( 𝑖 ∈ 𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) |
12 |
11
|
mpoexg |
⊢ ( ( 𝑋 ∈ Fin ∧ ℝ ∈ V ) → ( 𝑖 ∈ 𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) ∈ V ) |
13 |
2 10 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) ∈ V ) |
14 |
1 8 2 13
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑋 ) = ( 𝑖 ∈ 𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
15 |
|
simpl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑦 = 𝑌 ) → 𝑖 = 𝐼 ) |
16 |
15
|
eqeq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑦 = 𝑌 ) → ( 𝑘 = 𝑖 ↔ 𝑘 = 𝐼 ) ) |
17 |
|
simpr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑦 = 𝑌 ) → ( -∞ (,) 𝑦 ) = ( -∞ (,) 𝑌 ) ) |
19 |
16 18
|
ifbieq1d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑦 = 𝑌 ) → if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) = if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
20 |
19
|
ixpeq2dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑦 = 𝑌 ) → X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) = X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑦 = 𝑌 ) ) → X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) = X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
22 |
|
ovex |
⊢ ( -∞ (,) 𝑌 ) ∈ V |
23 |
22 9
|
ifcli |
⊢ if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V |
24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V ) |
25 |
24
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V ) |
26 |
|
ixpexg |
⊢ ( ∀ 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V → X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V ) |
28 |
14 21 3 4 27
|
ovmpod |
⊢ ( 𝜑 → ( 𝐼 ( 𝐻 ‘ 𝑋 ) 𝑌 ) = X 𝑘 ∈ 𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ) |