Metamath Proof Explorer


Theorem hspval

Description: The value of the half-space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses hspval.h 𝐻 = ( 𝑥 ∈ Fin ↦ ( 𝑖𝑥 , 𝑦 ∈ ℝ ↦ X 𝑘𝑥 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) )
hspval.x ( 𝜑𝑋 ∈ Fin )
hspval.i ( 𝜑𝐼𝑋 )
hspval.y ( 𝜑𝑌 ∈ ℝ )
Assertion hspval ( 𝜑 → ( 𝐼 ( 𝐻𝑋 ) 𝑌 ) = X 𝑘𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) )

Proof

Step Hyp Ref Expression
1 hspval.h 𝐻 = ( 𝑥 ∈ Fin ↦ ( 𝑖𝑥 , 𝑦 ∈ ℝ ↦ X 𝑘𝑥 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) )
2 hspval.x ( 𝜑𝑋 ∈ Fin )
3 hspval.i ( 𝜑𝐼𝑋 )
4 hspval.y ( 𝜑𝑌 ∈ ℝ )
5 id ( 𝑥 = 𝑋𝑥 = 𝑋 )
6 eqidd ( 𝑥 = 𝑋 → ℝ = ℝ )
7 ixpeq1 ( 𝑥 = 𝑋X 𝑘𝑥 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) = X 𝑘𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) )
8 5 6 7 mpoeq123dv ( 𝑥 = 𝑋 → ( 𝑖𝑥 , 𝑦 ∈ ℝ ↦ X 𝑘𝑥 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) = ( 𝑖𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) )
9 reex ℝ ∈ V
10 9 a1i ( 𝜑 → ℝ ∈ V )
11 eqid ( 𝑖𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) = ( 𝑖𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) )
12 11 mpoexg ( ( 𝑋 ∈ Fin ∧ ℝ ∈ V ) → ( 𝑖𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) ∈ V )
13 2 10 12 syl2anc ( 𝜑 → ( 𝑖𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) ∈ V )
14 1 8 2 13 fvmptd3 ( 𝜑 → ( 𝐻𝑋 ) = ( 𝑖𝑋 , 𝑦 ∈ ℝ ↦ X 𝑘𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) ) )
15 simpl ( ( 𝑖 = 𝐼𝑦 = 𝑌 ) → 𝑖 = 𝐼 )
16 15 eqeq2d ( ( 𝑖 = 𝐼𝑦 = 𝑌 ) → ( 𝑘 = 𝑖𝑘 = 𝐼 ) )
17 simpr ( ( 𝑖 = 𝐼𝑦 = 𝑌 ) → 𝑦 = 𝑌 )
18 17 oveq2d ( ( 𝑖 = 𝐼𝑦 = 𝑌 ) → ( -∞ (,) 𝑦 ) = ( -∞ (,) 𝑌 ) )
19 16 18 ifbieq1d ( ( 𝑖 = 𝐼𝑦 = 𝑌 ) → if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) = if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) )
20 19 ixpeq2dv ( ( 𝑖 = 𝐼𝑦 = 𝑌 ) → X 𝑘𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) = X 𝑘𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) )
21 20 adantl ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑦 = 𝑌 ) ) → X 𝑘𝑋 if ( 𝑘 = 𝑖 , ( -∞ (,) 𝑦 ) , ℝ ) = X 𝑘𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) )
22 ovex ( -∞ (,) 𝑌 ) ∈ V
23 22 9 ifcli if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V
24 23 a1i ( ( 𝜑𝑘𝑋 ) → if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V )
25 24 ralrimiva ( 𝜑 → ∀ 𝑘𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V )
26 ixpexg ( ∀ 𝑘𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V → X 𝑘𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V )
27 25 26 syl ( 𝜑X 𝑘𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V )
28 14 21 3 4 27 ovmpod ( 𝜑 → ( 𝐼 ( 𝐻𝑋 ) 𝑌 ) = X 𝑘𝑋 if ( 𝑘 = 𝐼 , ( -∞ (,) 𝑌 ) , ℝ ) )