| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hspval.h |
|- H = ( x e. Fin |-> ( i e. x , y e. RR |-> X_ k e. x if ( k = i , ( -oo (,) y ) , RR ) ) ) |
| 2 |
|
hspval.x |
|- ( ph -> X e. Fin ) |
| 3 |
|
hspval.i |
|- ( ph -> I e. X ) |
| 4 |
|
hspval.y |
|- ( ph -> Y e. RR ) |
| 5 |
|
id |
|- ( x = X -> x = X ) |
| 6 |
|
eqidd |
|- ( x = X -> RR = RR ) |
| 7 |
|
ixpeq1 |
|- ( x = X -> X_ k e. x if ( k = i , ( -oo (,) y ) , RR ) = X_ k e. X if ( k = i , ( -oo (,) y ) , RR ) ) |
| 8 |
5 6 7
|
mpoeq123dv |
|- ( x = X -> ( i e. x , y e. RR |-> X_ k e. x if ( k = i , ( -oo (,) y ) , RR ) ) = ( i e. X , y e. RR |-> X_ k e. X if ( k = i , ( -oo (,) y ) , RR ) ) ) |
| 9 |
|
reex |
|- RR e. _V |
| 10 |
9
|
a1i |
|- ( ph -> RR e. _V ) |
| 11 |
|
eqid |
|- ( i e. X , y e. RR |-> X_ k e. X if ( k = i , ( -oo (,) y ) , RR ) ) = ( i e. X , y e. RR |-> X_ k e. X if ( k = i , ( -oo (,) y ) , RR ) ) |
| 12 |
11
|
mpoexg |
|- ( ( X e. Fin /\ RR e. _V ) -> ( i e. X , y e. RR |-> X_ k e. X if ( k = i , ( -oo (,) y ) , RR ) ) e. _V ) |
| 13 |
2 10 12
|
syl2anc |
|- ( ph -> ( i e. X , y e. RR |-> X_ k e. X if ( k = i , ( -oo (,) y ) , RR ) ) e. _V ) |
| 14 |
1 8 2 13
|
fvmptd3 |
|- ( ph -> ( H ` X ) = ( i e. X , y e. RR |-> X_ k e. X if ( k = i , ( -oo (,) y ) , RR ) ) ) |
| 15 |
|
simpl |
|- ( ( i = I /\ y = Y ) -> i = I ) |
| 16 |
15
|
eqeq2d |
|- ( ( i = I /\ y = Y ) -> ( k = i <-> k = I ) ) |
| 17 |
|
simpr |
|- ( ( i = I /\ y = Y ) -> y = Y ) |
| 18 |
17
|
oveq2d |
|- ( ( i = I /\ y = Y ) -> ( -oo (,) y ) = ( -oo (,) Y ) ) |
| 19 |
16 18
|
ifbieq1d |
|- ( ( i = I /\ y = Y ) -> if ( k = i , ( -oo (,) y ) , RR ) = if ( k = I , ( -oo (,) Y ) , RR ) ) |
| 20 |
19
|
ixpeq2dv |
|- ( ( i = I /\ y = Y ) -> X_ k e. X if ( k = i , ( -oo (,) y ) , RR ) = X_ k e. X if ( k = I , ( -oo (,) Y ) , RR ) ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ ( i = I /\ y = Y ) ) -> X_ k e. X if ( k = i , ( -oo (,) y ) , RR ) = X_ k e. X if ( k = I , ( -oo (,) Y ) , RR ) ) |
| 22 |
|
ovex |
|- ( -oo (,) Y ) e. _V |
| 23 |
22 9
|
ifcli |
|- if ( k = I , ( -oo (,) Y ) , RR ) e. _V |
| 24 |
23
|
a1i |
|- ( ( ph /\ k e. X ) -> if ( k = I , ( -oo (,) Y ) , RR ) e. _V ) |
| 25 |
24
|
ralrimiva |
|- ( ph -> A. k e. X if ( k = I , ( -oo (,) Y ) , RR ) e. _V ) |
| 26 |
|
ixpexg |
|- ( A. k e. X if ( k = I , ( -oo (,) Y ) , RR ) e. _V -> X_ k e. X if ( k = I , ( -oo (,) Y ) , RR ) e. _V ) |
| 27 |
25 26
|
syl |
|- ( ph -> X_ k e. X if ( k = I , ( -oo (,) Y ) , RR ) e. _V ) |
| 28 |
14 21 3 4 27
|
ovmpod |
|- ( ph -> ( I ( H ` X ) Y ) = X_ k e. X if ( k = I , ( -oo (,) Y ) , RR ) ) |