Metamath Proof Explorer


Theorem hoidifhspval

Description: D is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of Fremlin1 p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses hoidifhspval.d D = x a X k X if k = K if x a k a k x a k
hoidifhspval.y φ Y
Assertion hoidifhspval φ D Y = a X k X if k = K if Y a k a k Y a k

Proof

Step Hyp Ref Expression
1 hoidifhspval.d D = x a X k X if k = K if x a k a k x a k
2 hoidifhspval.y φ Y
3 breq1 x = Y x a k Y a k
4 id x = Y x = Y
5 3 4 ifbieq2d x = Y if x a k a k x = if Y a k a k Y
6 5 ifeq1d x = Y if k = K if x a k a k x a k = if k = K if Y a k a k Y a k
7 6 mpteq2dv x = Y k X if k = K if x a k a k x a k = k X if k = K if Y a k a k Y a k
8 7 mpteq2dv x = Y a X k X if k = K if x a k a k x a k = a X k X if k = K if Y a k a k Y a k
9 ovex X V
10 9 mptex a X k X if k = K if Y a k a k Y a k V
11 10 a1i φ a X k X if k = K if Y a k a k Y a k V
12 1 8 2 11 fvmptd3 φ D Y = a X k X if k = K if Y a k a k Y a k