Metamath Proof Explorer


Theorem homahom

Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homahom.h 𝐻 = ( Homa𝐶 )
homahom.j 𝐽 = ( Hom ‘ 𝐶 )
Assertion homahom ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 2nd𝐹 ) ∈ ( 𝑋 𝐽 𝑌 ) )

Proof

Step Hyp Ref Expression
1 homahom.h 𝐻 = ( Homa𝐶 )
2 homahom.j 𝐽 = ( Hom ‘ 𝐶 )
3 1 homarel Rel ( 𝑋 𝐻 𝑌 )
4 1st2ndbr ( ( Rel ( 𝑋 𝐻 𝑌 ) ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 1st𝐹 ) ( 𝑋 𝐻 𝑌 ) ( 2nd𝐹 ) )
5 3 4 mpan ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 1st𝐹 ) ( 𝑋 𝐻 𝑌 ) ( 2nd𝐹 ) )
6 1 2 homahom2 ( ( 1st𝐹 ) ( 𝑋 𝐻 𝑌 ) ( 2nd𝐹 ) → ( 2nd𝐹 ) ∈ ( 𝑋 𝐽 𝑌 ) )
7 5 6 syl ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 2nd𝐹 ) ∈ ( 𝑋 𝐽 𝑌 ) )