Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homahom.h | |- H = ( HomA ` C ) |
|
| homahom.j | |- J = ( Hom ` C ) |
||
| Assertion | homahom | |- ( F e. ( X H Y ) -> ( 2nd ` F ) e. ( X J Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | |- H = ( HomA ` C ) |
|
| 2 | homahom.j | |- J = ( Hom ` C ) |
|
| 3 | 1 | homarel | |- Rel ( X H Y ) |
| 4 | 1st2ndbr | |- ( ( Rel ( X H Y ) /\ F e. ( X H Y ) ) -> ( 1st ` F ) ( X H Y ) ( 2nd ` F ) ) |
|
| 5 | 3 4 | mpan | |- ( F e. ( X H Y ) -> ( 1st ` F ) ( X H Y ) ( 2nd ` F ) ) |
| 6 | 1 2 | homahom2 | |- ( ( 1st ` F ) ( X H Y ) ( 2nd ` F ) -> ( 2nd ` F ) e. ( X J Y ) ) |
| 7 | 5 6 | syl | |- ( F e. ( X H Y ) -> ( 2nd ` F ) e. ( X J Y ) ) |