Metamath Proof Explorer


Theorem homahom

Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homahom.h
|- H = ( HomA ` C )
homahom.j
|- J = ( Hom ` C )
Assertion homahom
|- ( F e. ( X H Y ) -> ( 2nd ` F ) e. ( X J Y ) )

Proof

Step Hyp Ref Expression
1 homahom.h
 |-  H = ( HomA ` C )
2 homahom.j
 |-  J = ( Hom ` C )
3 1 homarel
 |-  Rel ( X H Y )
4 1st2ndbr
 |-  ( ( Rel ( X H Y ) /\ F e. ( X H Y ) ) -> ( 1st ` F ) ( X H Y ) ( 2nd ` F ) )
5 3 4 mpan
 |-  ( F e. ( X H Y ) -> ( 1st ` F ) ( X H Y ) ( 2nd ` F ) )
6 1 2 homahom2
 |-  ( ( 1st ` F ) ( X H Y ) ( 2nd ` F ) -> ( 2nd ` F ) e. ( X J Y ) )
7 5 6 syl
 |-  ( F e. ( X H Y ) -> ( 2nd ` F ) e. ( X J Y ) )