| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homahom.h |
|- H = ( HomA ` C ) |
| 2 |
|
homahom.j |
|- J = ( Hom ` C ) |
| 3 |
|
df-br |
|- ( Z ( X H Y ) F <-> <. Z , F >. e. ( X H Y ) ) |
| 4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 5 |
1
|
homarcl |
|- ( <. Z , F >. e. ( X H Y ) -> C e. Cat ) |
| 6 |
1 4
|
homarcl2 |
|- ( <. Z , F >. e. ( X H Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 7 |
6
|
simpld |
|- ( <. Z , F >. e. ( X H Y ) -> X e. ( Base ` C ) ) |
| 8 |
6
|
simprd |
|- ( <. Z , F >. e. ( X H Y ) -> Y e. ( Base ` C ) ) |
| 9 |
1 4 5 2 7 8
|
elhoma |
|- ( <. Z , F >. e. ( X H Y ) -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) ) |
| 10 |
3 9
|
sylbi |
|- ( Z ( X H Y ) F -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) ) |
| 11 |
10
|
ibi |
|- ( Z ( X H Y ) F -> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) |
| 12 |
11
|
simprd |
|- ( Z ( X H Y ) F -> F e. ( X J Y ) ) |