Metamath Proof Explorer


Theorem homahom2

Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homahom.h H=HomaC
homahom.j J=HomC
Assertion homahom2 ZXHYFFXJY

Proof

Step Hyp Ref Expression
1 homahom.h H=HomaC
2 homahom.j J=HomC
3 df-br ZXHYFZFXHY
4 eqid BaseC=BaseC
5 1 homarcl ZFXHYCCat
6 1 4 homarcl2 ZFXHYXBaseCYBaseC
7 6 simpld ZFXHYXBaseC
8 6 simprd ZFXHYYBaseC
9 1 4 5 2 7 8 elhoma ZFXHYZXHYFZ=XYFXJY
10 3 9 sylbi ZXHYFZXHYFZ=XYFXJY
11 10 ibi ZXHYFZ=XYFXJY
12 11 simprd ZXHYFFXJY