| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homarcl.h |
|- H = ( HomA ` C ) |
| 2 |
|
homafval.b |
|- B = ( Base ` C ) |
| 3 |
|
homafval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
homaval.j |
|- J = ( Hom ` C ) |
| 5 |
|
homaval.x |
|- ( ph -> X e. B ) |
| 6 |
|
homaval.y |
|- ( ph -> Y e. B ) |
| 7 |
1 2 3 4 5 6
|
homaval |
|- ( ph -> ( X H Y ) = ( { <. X , Y >. } X. ( X J Y ) ) ) |
| 8 |
7
|
breqd |
|- ( ph -> ( Z ( X H Y ) F <-> Z ( { <. X , Y >. } X. ( X J Y ) ) F ) ) |
| 9 |
|
brxp |
|- ( Z ( { <. X , Y >. } X. ( X J Y ) ) F <-> ( Z e. { <. X , Y >. } /\ F e. ( X J Y ) ) ) |
| 10 |
|
opex |
|- <. X , Y >. e. _V |
| 11 |
10
|
elsn2 |
|- ( Z e. { <. X , Y >. } <-> Z = <. X , Y >. ) |
| 12 |
11
|
anbi1i |
|- ( ( Z e. { <. X , Y >. } /\ F e. ( X J Y ) ) <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) |
| 13 |
9 12
|
bitri |
|- ( Z ( { <. X , Y >. } X. ( X J Y ) ) F <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) |
| 14 |
8 13
|
bitrdi |
|- ( ph -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) ) |