| Step | Hyp | Ref | Expression | 
						
							| 1 |  | homarcl.h |  |-  H = ( HomA ` C ) | 
						
							| 2 |  | homafval.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | homafval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | homaval.j |  |-  J = ( Hom ` C ) | 
						
							| 5 |  | homaval.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | homaval.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | df-ov |  |-  ( X H Y ) = ( H ` <. X , Y >. ) | 
						
							| 8 | 1 2 3 4 | homafval |  |-  ( ph -> H = ( z e. ( B X. B ) |-> ( { z } X. ( J ` z ) ) ) ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ z = <. X , Y >. ) -> z = <. X , Y >. ) | 
						
							| 10 | 9 | sneqd |  |-  ( ( ph /\ z = <. X , Y >. ) -> { z } = { <. X , Y >. } ) | 
						
							| 11 | 9 | fveq2d |  |-  ( ( ph /\ z = <. X , Y >. ) -> ( J ` z ) = ( J ` <. X , Y >. ) ) | 
						
							| 12 |  | df-ov |  |-  ( X J Y ) = ( J ` <. X , Y >. ) | 
						
							| 13 | 11 12 | eqtr4di |  |-  ( ( ph /\ z = <. X , Y >. ) -> ( J ` z ) = ( X J Y ) ) | 
						
							| 14 | 10 13 | xpeq12d |  |-  ( ( ph /\ z = <. X , Y >. ) -> ( { z } X. ( J ` z ) ) = ( { <. X , Y >. } X. ( X J Y ) ) ) | 
						
							| 15 | 5 6 | opelxpd |  |-  ( ph -> <. X , Y >. e. ( B X. B ) ) | 
						
							| 16 |  | snex |  |-  { <. X , Y >. } e. _V | 
						
							| 17 |  | ovex |  |-  ( X J Y ) e. _V | 
						
							| 18 | 16 17 | xpex |  |-  ( { <. X , Y >. } X. ( X J Y ) ) e. _V | 
						
							| 19 | 18 | a1i |  |-  ( ph -> ( { <. X , Y >. } X. ( X J Y ) ) e. _V ) | 
						
							| 20 | 8 14 15 19 | fvmptd |  |-  ( ph -> ( H ` <. X , Y >. ) = ( { <. X , Y >. } X. ( X J Y ) ) ) | 
						
							| 21 | 7 20 | eqtrid |  |-  ( ph -> ( X H Y ) = ( { <. X , Y >. } X. ( X J Y ) ) ) |