| Step | Hyp | Ref | Expression | 
						
							| 1 |  | homarcl.h |  |-  H = ( HomA ` C ) | 
						
							| 2 |  | homafval.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | homafval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | homafval.j |  |-  J = ( Hom ` C ) | 
						
							| 5 |  | fveq2 |  |-  ( c = C -> ( Base ` c ) = ( Base ` C ) ) | 
						
							| 6 | 5 2 | eqtr4di |  |-  ( c = C -> ( Base ` c ) = B ) | 
						
							| 7 | 6 | sqxpeqd |  |-  ( c = C -> ( ( Base ` c ) X. ( Base ` c ) ) = ( B X. B ) ) | 
						
							| 8 |  | fveq2 |  |-  ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) | 
						
							| 9 | 8 4 | eqtr4di |  |-  ( c = C -> ( Hom ` c ) = J ) | 
						
							| 10 | 9 | fveq1d |  |-  ( c = C -> ( ( Hom ` c ) ` x ) = ( J ` x ) ) | 
						
							| 11 | 10 | xpeq2d |  |-  ( c = C -> ( { x } X. ( ( Hom ` c ) ` x ) ) = ( { x } X. ( J ` x ) ) ) | 
						
							| 12 | 7 11 | mpteq12dv |  |-  ( c = C -> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) = ( x e. ( B X. B ) |-> ( { x } X. ( J ` x ) ) ) ) | 
						
							| 13 |  | df-homa |  |-  HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) ) | 
						
							| 14 | 2 | fvexi |  |-  B e. _V | 
						
							| 15 | 14 14 | xpex |  |-  ( B X. B ) e. _V | 
						
							| 16 | 15 | mptex |  |-  ( x e. ( B X. B ) |-> ( { x } X. ( J ` x ) ) ) e. _V | 
						
							| 17 | 12 13 16 | fvmpt |  |-  ( C e. Cat -> ( HomA ` C ) = ( x e. ( B X. B ) |-> ( { x } X. ( J ` x ) ) ) ) | 
						
							| 18 | 3 17 | syl |  |-  ( ph -> ( HomA ` C ) = ( x e. ( B X. B ) |-> ( { x } X. ( J ` x ) ) ) ) | 
						
							| 19 | 1 18 | eqtrid |  |-  ( ph -> H = ( x e. ( B X. B ) |-> ( { x } X. ( J ` x ) ) ) ) |