| Step | Hyp | Ref | Expression | 
						
							| 1 |  | homarcl.h | ⊢ 𝐻  =  ( Homa ‘ 𝐶 ) | 
						
							| 2 |  | homafval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | homafval.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 4 |  | homafval.j | ⊢ 𝐽  =  ( Hom  ‘ 𝐶 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  ( Base ‘ 𝐶 ) ) | 
						
							| 6 | 5 2 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  𝐵 ) | 
						
							| 7 | 6 | sqxpeqd | ⊢ ( 𝑐  =  𝐶  →  ( ( Base ‘ 𝑐 )  ×  ( Base ‘ 𝑐 ) )  =  ( 𝐵  ×  𝐵 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Hom  ‘ 𝑐 )  =  ( Hom  ‘ 𝐶 ) ) | 
						
							| 9 | 8 4 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Hom  ‘ 𝑐 )  =  𝐽 ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( 𝑐  =  𝐶  →  ( ( Hom  ‘ 𝑐 ) ‘ 𝑥 )  =  ( 𝐽 ‘ 𝑥 ) ) | 
						
							| 11 | 10 | xpeq2d | ⊢ ( 𝑐  =  𝐶  →  ( { 𝑥 }  ×  ( ( Hom  ‘ 𝑐 ) ‘ 𝑥 ) )  =  ( { 𝑥 }  ×  ( 𝐽 ‘ 𝑥 ) ) ) | 
						
							| 12 | 7 11 | mpteq12dv | ⊢ ( 𝑐  =  𝐶  →  ( 𝑥  ∈  ( ( Base ‘ 𝑐 )  ×  ( Base ‘ 𝑐 ) )  ↦  ( { 𝑥 }  ×  ( ( Hom  ‘ 𝑐 ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 𝐵  ×  𝐵 )  ↦  ( { 𝑥 }  ×  ( 𝐽 ‘ 𝑥 ) ) ) ) | 
						
							| 13 |  | df-homa | ⊢ Homa  =  ( 𝑐  ∈  Cat  ↦  ( 𝑥  ∈  ( ( Base ‘ 𝑐 )  ×  ( Base ‘ 𝑐 ) )  ↦  ( { 𝑥 }  ×  ( ( Hom  ‘ 𝑐 ) ‘ 𝑥 ) ) ) ) | 
						
							| 14 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 15 | 14 14 | xpex | ⊢ ( 𝐵  ×  𝐵 )  ∈  V | 
						
							| 16 | 15 | mptex | ⊢ ( 𝑥  ∈  ( 𝐵  ×  𝐵 )  ↦  ( { 𝑥 }  ×  ( 𝐽 ‘ 𝑥 ) ) )  ∈  V | 
						
							| 17 | 12 13 16 | fvmpt | ⊢ ( 𝐶  ∈  Cat  →  ( Homa ‘ 𝐶 )  =  ( 𝑥  ∈  ( 𝐵  ×  𝐵 )  ↦  ( { 𝑥 }  ×  ( 𝐽 ‘ 𝑥 ) ) ) ) | 
						
							| 18 | 3 17 | syl | ⊢ ( 𝜑  →  ( Homa ‘ 𝐶 )  =  ( 𝑥  ∈  ( 𝐵  ×  𝐵 )  ↦  ( { 𝑥 }  ×  ( 𝐽 ‘ 𝑥 ) ) ) ) | 
						
							| 19 | 1 18 | eqtrid | ⊢ ( 𝜑  →  𝐻  =  ( 𝑥  ∈  ( 𝐵  ×  𝐵 )  ↦  ( { 𝑥 }  ×  ( 𝐽 ‘ 𝑥 ) ) ) ) |