| Step | Hyp | Ref | Expression | 
						
							| 1 |  | homarcl.h | ⊢ 𝐻  =  ( Homa ‘ 𝐶 ) | 
						
							| 2 |  | homafval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | homafval.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 4 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 5 | 1 2 3 4 | homafval | ⊢ ( 𝜑  →  𝐻  =  ( 𝑥  ∈  ( 𝐵  ×  𝐵 )  ↦  ( { 𝑥 }  ×  ( ( Hom  ‘ 𝐶 ) ‘ 𝑥 ) ) ) ) | 
						
							| 6 |  | snssi | ⊢ ( 𝑥  ∈  ( 𝐵  ×  𝐵 )  →  { 𝑥 }  ⊆  ( 𝐵  ×  𝐵 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ×  𝐵 ) )  →  { 𝑥 }  ⊆  ( 𝐵  ×  𝐵 ) ) | 
						
							| 8 |  | ssv | ⊢ ( ( Hom  ‘ 𝐶 ) ‘ 𝑥 )  ⊆  V | 
						
							| 9 |  | xpss12 | ⊢ ( ( { 𝑥 }  ⊆  ( 𝐵  ×  𝐵 )  ∧  ( ( Hom  ‘ 𝐶 ) ‘ 𝑥 )  ⊆  V )  →  ( { 𝑥 }  ×  ( ( Hom  ‘ 𝐶 ) ‘ 𝑥 ) )  ⊆  ( ( 𝐵  ×  𝐵 )  ×  V ) ) | 
						
							| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ×  𝐵 ) )  →  ( { 𝑥 }  ×  ( ( Hom  ‘ 𝐶 ) ‘ 𝑥 ) )  ⊆  ( ( 𝐵  ×  𝐵 )  ×  V ) ) | 
						
							| 11 |  | vsnex | ⊢ { 𝑥 }  ∈  V | 
						
							| 12 |  | fvex | ⊢ ( ( Hom  ‘ 𝐶 ) ‘ 𝑥 )  ∈  V | 
						
							| 13 | 11 12 | xpex | ⊢ ( { 𝑥 }  ×  ( ( Hom  ‘ 𝐶 ) ‘ 𝑥 ) )  ∈  V | 
						
							| 14 | 13 | elpw | ⊢ ( ( { 𝑥 }  ×  ( ( Hom  ‘ 𝐶 ) ‘ 𝑥 ) )  ∈  𝒫  ( ( 𝐵  ×  𝐵 )  ×  V )  ↔  ( { 𝑥 }  ×  ( ( Hom  ‘ 𝐶 ) ‘ 𝑥 ) )  ⊆  ( ( 𝐵  ×  𝐵 )  ×  V ) ) | 
						
							| 15 | 10 14 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ×  𝐵 ) )  →  ( { 𝑥 }  ×  ( ( Hom  ‘ 𝐶 ) ‘ 𝑥 ) )  ∈  𝒫  ( ( 𝐵  ×  𝐵 )  ×  V ) ) | 
						
							| 16 | 5 15 | fmpt3d | ⊢ ( 𝜑  →  𝐻 : ( 𝐵  ×  𝐵 ) ⟶ 𝒫  ( ( 𝐵  ×  𝐵 )  ×  V ) ) |