Metamath Proof Explorer


Theorem homaf

Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h H=HomaC
homafval.b B=BaseC
homafval.c φCCat
Assertion homaf φH:B×B𝒫B×B×V

Proof

Step Hyp Ref Expression
1 homarcl.h H=HomaC
2 homafval.b B=BaseC
3 homafval.c φCCat
4 eqid HomC=HomC
5 1 2 3 4 homafval φH=xB×Bx×HomCx
6 snssi xB×BxB×B
7 6 adantl φxB×BxB×B
8 ssv HomCxV
9 xpss12 xB×BHomCxVx×HomCxB×B×V
10 7 8 9 sylancl φxB×Bx×HomCxB×B×V
11 vsnex xV
12 fvex HomCxV
13 11 12 xpex x×HomCxV
14 13 elpw x×HomCx𝒫B×B×Vx×HomCxB×B×V
15 10 14 sylibr φxB×Bx×HomCx𝒫B×B×V
16 5 15 fmpt3d φH:B×B𝒫B×B×V