Description: Closure of the value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hstcl | ⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishst | ⊢ ( 𝑆 ∈ CHStates ↔ ( 𝑆 : Cℋ ⟶ ℋ ∧ ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) | |
2 | 1 | simp1bi | ⊢ ( 𝑆 ∈ CHStates → 𝑆 : Cℋ ⟶ ℋ ) |
3 | 2 | ffvelrnda | ⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) |