Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hilex |
⊢ ℋ ∈ V |
2 |
|
chex |
⊢ Cℋ ∈ V |
3 |
1 2
|
elmap |
⊢ ( 𝑆 ∈ ( ℋ ↑m Cℋ ) ↔ 𝑆 : Cℋ ⟶ ℋ ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑆 ∈ ( ℋ ↑m Cℋ ) ∧ ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ↔ ( 𝑆 : Cℋ ⟶ ℋ ∧ ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) |
5 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ ℋ ) = ( 𝑆 ‘ ℋ ) ) |
6 |
5
|
fveqeq2d |
⊢ ( 𝑓 = 𝑆 → ( ( normℎ ‘ ( 𝑓 ‘ ℋ ) ) = 1 ↔ ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ) ) |
7 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
8 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
9 |
7 8
|
oveq12d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑓 = 𝑆 → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ↔ ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ) ) |
11 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) ) |
12 |
7 8
|
oveq12d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) |
13 |
11 12
|
eqeq12d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) |
14 |
10 13
|
anbi12d |
⊢ ( 𝑓 = 𝑆 → ( ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |
16 |
15
|
2ralbidv |
⊢ ( 𝑓 = 𝑆 → ( ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |
17 |
6 16
|
anbi12d |
⊢ ( 𝑓 = 𝑆 → ( ( ( normℎ ‘ ( 𝑓 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ↔ ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) |
18 |
|
df-hst |
⊢ CHStates = { 𝑓 ∈ ( ℋ ↑m Cℋ ) ∣ ( ( normℎ ‘ ( 𝑓 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) ) } |
19 |
17 18
|
elrab2 |
⊢ ( 𝑆 ∈ CHStates ↔ ( 𝑆 ∈ ( ℋ ↑m Cℋ ) ∧ ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) |
20 |
|
3anass |
⊢ ( ( 𝑆 : Cℋ ⟶ ℋ ∧ ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝑆 : Cℋ ⟶ ℋ ∧ ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) |
21 |
4 19 20
|
3bitr4i |
⊢ ( 𝑆 ∈ CHStates ↔ ( 𝑆 : Cℋ ⟶ ℋ ∧ ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |