| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 2 |  | chex | ⊢  Cℋ   ∈  V | 
						
							| 3 | 1 2 | elmap | ⊢ ( 𝑆  ∈  (  ℋ  ↑m   Cℋ  )  ↔  𝑆 :  Cℋ  ⟶  ℋ ) | 
						
							| 4 | 3 | anbi1i | ⊢ ( ( 𝑆  ∈  (  ℋ  ↑m   Cℋ  )  ∧  ( ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) ) ) )  ↔  ( 𝑆 :  Cℋ  ⟶  ℋ  ∧  ( ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 5 |  | fveq1 | ⊢ ( 𝑓  =  𝑆  →  ( 𝑓 ‘  ℋ )  =  ( 𝑆 ‘  ℋ ) ) | 
						
							| 6 | 5 | fveqeq2d | ⊢ ( 𝑓  =  𝑆  →  ( ( normℎ ‘ ( 𝑓 ‘  ℋ ) )  =  1  ↔  ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1 ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑓  =  𝑆  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) ) | 
						
							| 8 |  | fveq1 | ⊢ ( 𝑓  =  𝑆  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝑆 ‘ 𝑦 ) ) | 
						
							| 9 | 7 8 | oveq12d | ⊢ ( 𝑓  =  𝑆  →  ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑓  =  𝑆  →  ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ↔  ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  0 ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑓  =  𝑆  →  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) ) ) | 
						
							| 12 | 7 8 | oveq12d | ⊢ ( 𝑓  =  𝑆  →  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 13 | 11 12 | eqeq12d | ⊢ ( 𝑓  =  𝑆  →  ( ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) ) | 
						
							| 14 | 10 13 | anbi12d | ⊢ ( 𝑓  =  𝑆  →  ( ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) )  ↔  ( ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑓  =  𝑆  →  ( ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 16 | 15 | 2ralbidv | ⊢ ( 𝑓  =  𝑆  →  ( ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 17 | 6 16 | anbi12d | ⊢ ( 𝑓  =  𝑆  →  ( ( ( normℎ ‘ ( 𝑓 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) ) ) )  ↔  ( ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 18 |  | df-hst | ⊢ CHStates  =  { 𝑓  ∈  (  ℋ  ↑m   Cℋ  )  ∣  ( ( normℎ ‘ ( 𝑓 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) ) ) ) } | 
						
							| 19 | 17 18 | elrab2 | ⊢ ( 𝑆  ∈  CHStates  ↔  ( 𝑆  ∈  (  ℋ  ↑m   Cℋ  )  ∧  ( ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 20 |  | 3anass | ⊢ ( ( 𝑆 :  Cℋ  ⟶  ℋ  ∧  ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) ) )  ↔  ( 𝑆 :  Cℋ  ⟶  ℋ  ∧  ( ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 21 | 4 19 20 | 3bitr4i | ⊢ ( 𝑆  ∈  CHStates  ↔  ( 𝑆 :  Cℋ  ⟶  ℋ  ∧  ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑆 ‘ 𝑥 )  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |