| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 2 |
|
chex |
⊢ Cℋ ∈ V |
| 3 |
1 2
|
elmap |
⊢ ( 𝑆 ∈ ( ℋ ↑m Cℋ ) ↔ 𝑆 : Cℋ ⟶ ℋ ) |
| 4 |
3
|
anbi1i |
⊢ ( ( 𝑆 ∈ ( ℋ ↑m Cℋ ) ∧ ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ↔ ( 𝑆 : Cℋ ⟶ ℋ ∧ ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) |
| 5 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ ℋ ) = ( 𝑆 ‘ ℋ ) ) |
| 6 |
5
|
fveqeq2d |
⊢ ( 𝑓 = 𝑆 → ( ( normℎ ‘ ( 𝑓 ‘ ℋ ) ) = 1 ↔ ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ) ) |
| 7 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 8 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
| 9 |
7 8
|
oveq12d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑓 = 𝑆 → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ↔ ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ) ) |
| 11 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) ) |
| 12 |
7 8
|
oveq12d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) |
| 13 |
11 12
|
eqeq12d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 14 |
10 13
|
anbi12d |
⊢ ( 𝑓 = 𝑆 → ( ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |
| 16 |
15
|
2ralbidv |
⊢ ( 𝑓 = 𝑆 → ( ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |
| 17 |
6 16
|
anbi12d |
⊢ ( 𝑓 = 𝑆 → ( ( ( normℎ ‘ ( 𝑓 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ↔ ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) |
| 18 |
|
df-hst |
⊢ CHStates = { 𝑓 ∈ ( ℋ ↑m Cℋ ) ∣ ( ( normℎ ‘ ( 𝑓 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) ) } |
| 19 |
17 18
|
elrab2 |
⊢ ( 𝑆 ∈ CHStates ↔ ( 𝑆 ∈ ( ℋ ↑m Cℋ ) ∧ ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) |
| 20 |
|
3anass |
⊢ ( ( 𝑆 : Cℋ ⟶ ℋ ∧ ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝑆 : Cℋ ⟶ ℋ ∧ ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) ) |
| 21 |
4 19 20
|
3bitr4i |
⊢ ( 𝑆 ∈ CHStates ↔ ( 𝑆 : Cℋ ⟶ ℋ ∧ ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih ( 𝑆 ‘ 𝑦 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |