| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chst |
⊢ CHStates |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
chba |
⊢ ℋ |
| 3 |
|
cmap |
⊢ ↑m |
| 4 |
|
cch |
⊢ Cℋ |
| 5 |
2 4 3
|
co |
⊢ ( ℋ ↑m Cℋ ) |
| 6 |
|
cno |
⊢ normℎ |
| 7 |
1
|
cv |
⊢ 𝑓 |
| 8 |
2 7
|
cfv |
⊢ ( 𝑓 ‘ ℋ ) |
| 9 |
8 6
|
cfv |
⊢ ( normℎ ‘ ( 𝑓 ‘ ℋ ) ) |
| 10 |
|
c1 |
⊢ 1 |
| 11 |
9 10
|
wceq |
⊢ ( normℎ ‘ ( 𝑓 ‘ ℋ ) ) = 1 |
| 12 |
|
vx |
⊢ 𝑥 |
| 13 |
|
vy |
⊢ 𝑦 |
| 14 |
12
|
cv |
⊢ 𝑥 |
| 15 |
|
cort |
⊢ ⊥ |
| 16 |
13
|
cv |
⊢ 𝑦 |
| 17 |
16 15
|
cfv |
⊢ ( ⊥ ‘ 𝑦 ) |
| 18 |
14 17
|
wss |
⊢ 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) |
| 19 |
14 7
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 20 |
|
csp |
⊢ ·ih |
| 21 |
16 7
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
| 22 |
19 21 20
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) |
| 23 |
|
cc0 |
⊢ 0 |
| 24 |
22 23
|
wceq |
⊢ ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 |
| 25 |
|
chj |
⊢ ∨ℋ |
| 26 |
14 16 25
|
co |
⊢ ( 𝑥 ∨ℋ 𝑦 ) |
| 27 |
26 7
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) |
| 28 |
|
cva |
⊢ +ℎ |
| 29 |
19 21 28
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) |
| 30 |
27 29
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) |
| 31 |
24 30
|
wa |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) |
| 32 |
18 31
|
wi |
⊢ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 33 |
32 13 4
|
wral |
⊢ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 34 |
33 12 4
|
wral |
⊢ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 35 |
11 34
|
wa |
⊢ ( ( normℎ ‘ ( 𝑓 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 36 |
35 1 5
|
crab |
⊢ { 𝑓 ∈ ( ℋ ↑m Cℋ ) ∣ ( ( normℎ ‘ ( 𝑓 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) ) } |
| 37 |
0 36
|
wceq |
⊢ CHStates = { 𝑓 ∈ ( ℋ ↑m Cℋ ) ∣ ( ( normℎ ‘ ( 𝑓 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ·ih ( 𝑓 ‘ 𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑓 ‘ 𝑦 ) ) ) ) ) } |