Metamath Proof Explorer


Definition df-hst

Description: Define the set of complex Hilbert-space-valued states on a Hilbert lattice. Definition of CH-states in Mayet3 p. 9. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hst CHStates = { 𝑓 ∈ ( ℋ ↑m C ) ∣ ( ( norm ‘ ( 𝑓 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥C𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓𝑥 ) ·ih ( 𝑓𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 chst CHStates
1 vf 𝑓
2 chba
3 cmap m
4 cch C
5 2 4 3 co ( ℋ ↑m C )
6 cno norm
7 1 cv 𝑓
8 2 7 cfv ( 𝑓 ‘ ℋ )
9 8 6 cfv ( norm ‘ ( 𝑓 ‘ ℋ ) )
10 c1 1
11 9 10 wceq ( norm ‘ ( 𝑓 ‘ ℋ ) ) = 1
12 vx 𝑥
13 vy 𝑦
14 12 cv 𝑥
15 cort
16 13 cv 𝑦
17 16 15 cfv ( ⊥ ‘ 𝑦 )
18 14 17 wss 𝑥 ⊆ ( ⊥ ‘ 𝑦 )
19 14 7 cfv ( 𝑓𝑥 )
20 csp ·ih
21 16 7 cfv ( 𝑓𝑦 )
22 19 21 20 co ( ( 𝑓𝑥 ) ·ih ( 𝑓𝑦 ) )
23 cc0 0
24 22 23 wceq ( ( 𝑓𝑥 ) ·ih ( 𝑓𝑦 ) ) = 0
25 chj
26 14 16 25 co ( 𝑥 𝑦 )
27 26 7 cfv ( 𝑓 ‘ ( 𝑥 𝑦 ) )
28 cva +
29 19 21 28 co ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) )
30 27 29 wceq ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) )
31 24 30 wa ( ( ( 𝑓𝑥 ) ·ih ( 𝑓𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) )
32 18 31 wi ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓𝑥 ) ·ih ( 𝑓𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) ) )
33 32 13 4 wral 𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓𝑥 ) ·ih ( 𝑓𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) ) )
34 33 12 4 wral 𝑥C𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓𝑥 ) ·ih ( 𝑓𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) ) )
35 11 34 wa ( ( norm ‘ ( 𝑓 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥C𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓𝑥 ) ·ih ( 𝑓𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) ) ) )
36 35 1 5 crab { 𝑓 ∈ ( ℋ ↑m C ) ∣ ( ( norm ‘ ( 𝑓 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥C𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓𝑥 ) ·ih ( 𝑓𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) ) ) ) }
37 0 36 wceq CHStates = { 𝑓 ∈ ( ℋ ↑m C ) ∣ ( ( norm ‘ ( 𝑓 ‘ ℋ ) ) = 1 ∧ ∀ 𝑥C𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( ( ( 𝑓𝑥 ) ·ih ( 𝑓𝑦 ) ) = 0 ∧ ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) ) ) ) }