| Step | Hyp | Ref | Expression | 
						
							| 0 |  | chst | ⊢ CHStates | 
						
							| 1 |  | vf | ⊢ 𝑓 | 
						
							| 2 |  | chba | ⊢  ℋ | 
						
							| 3 |  | cmap | ⊢  ↑m | 
						
							| 4 |  | cch | ⊢  Cℋ | 
						
							| 5 | 2 4 3 | co | ⊢ (  ℋ  ↑m   Cℋ  ) | 
						
							| 6 |  | cno | ⊢ normℎ | 
						
							| 7 | 1 | cv | ⊢ 𝑓 | 
						
							| 8 | 2 7 | cfv | ⊢ ( 𝑓 ‘  ℋ ) | 
						
							| 9 | 8 6 | cfv | ⊢ ( normℎ ‘ ( 𝑓 ‘  ℋ ) ) | 
						
							| 10 |  | c1 | ⊢ 1 | 
						
							| 11 | 9 10 | wceq | ⊢ ( normℎ ‘ ( 𝑓 ‘  ℋ ) )  =  1 | 
						
							| 12 |  | vx | ⊢ 𝑥 | 
						
							| 13 |  | vy | ⊢ 𝑦 | 
						
							| 14 | 12 | cv | ⊢ 𝑥 | 
						
							| 15 |  | cort | ⊢ ⊥ | 
						
							| 16 | 13 | cv | ⊢ 𝑦 | 
						
							| 17 | 16 15 | cfv | ⊢ ( ⊥ ‘ 𝑦 ) | 
						
							| 18 | 14 17 | wss | ⊢ 𝑥  ⊆  ( ⊥ ‘ 𝑦 ) | 
						
							| 19 | 14 7 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) | 
						
							| 20 |  | csp | ⊢  ·ih | 
						
							| 21 | 16 7 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) | 
						
							| 22 | 19 21 20 | co | ⊢ ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 23 |  | cc0 | ⊢ 0 | 
						
							| 24 | 22 23 | wceq | ⊢ ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0 | 
						
							| 25 |  | chj | ⊢  ∨ℋ | 
						
							| 26 | 14 16 25 | co | ⊢ ( 𝑥  ∨ℋ  𝑦 ) | 
						
							| 27 | 26 7 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) ) | 
						
							| 28 |  | cva | ⊢  +ℎ | 
						
							| 29 | 19 21 28 | co | ⊢ ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 30 | 27 29 | wceq | ⊢ ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 31 | 24 30 | wa | ⊢ ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 32 | 18 31 | wi | ⊢ ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 33 | 32 13 4 | wral | ⊢ ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 34 | 33 12 4 | wral | ⊢ ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 35 | 11 34 | wa | ⊢ ( ( normℎ ‘ ( 𝑓 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 36 | 35 1 5 | crab | ⊢ { 𝑓  ∈  (  ℋ  ↑m   Cℋ  )  ∣  ( ( normℎ ‘ ( 𝑓 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) ) ) ) } | 
						
							| 37 | 0 36 | wceq | ⊢ CHStates  =  { 𝑓  ∈  (  ℋ  ↑m   Cℋ  )  ∣  ( ( normℎ ‘ ( 𝑓 ‘  ℋ ) )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 )  ·ih  ( 𝑓 ‘ 𝑦 ) )  =  0  ∧  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +ℎ  ( 𝑓 ‘ 𝑦 ) ) ) ) ) } |