| Step | Hyp | Ref | Expression | 
						
							| 0 |  | chst |  |-  CHStates | 
						
							| 1 |  | vf |  |-  f | 
						
							| 2 |  | chba |  |-  ~H | 
						
							| 3 |  | cmap |  |-  ^m | 
						
							| 4 |  | cch |  |-  CH | 
						
							| 5 | 2 4 3 | co |  |-  ( ~H ^m CH ) | 
						
							| 6 |  | cno |  |-  normh | 
						
							| 7 | 1 | cv |  |-  f | 
						
							| 8 | 2 7 | cfv |  |-  ( f ` ~H ) | 
						
							| 9 | 8 6 | cfv |  |-  ( normh ` ( f ` ~H ) ) | 
						
							| 10 |  | c1 |  |-  1 | 
						
							| 11 | 9 10 | wceq |  |-  ( normh ` ( f ` ~H ) ) = 1 | 
						
							| 12 |  | vx |  |-  x | 
						
							| 13 |  | vy |  |-  y | 
						
							| 14 | 12 | cv |  |-  x | 
						
							| 15 |  | cort |  |-  _|_ | 
						
							| 16 | 13 | cv |  |-  y | 
						
							| 17 | 16 15 | cfv |  |-  ( _|_ ` y ) | 
						
							| 18 | 14 17 | wss |  |-  x C_ ( _|_ ` y ) | 
						
							| 19 | 14 7 | cfv |  |-  ( f ` x ) | 
						
							| 20 |  | csp |  |-  .ih | 
						
							| 21 | 16 7 | cfv |  |-  ( f ` y ) | 
						
							| 22 | 19 21 20 | co |  |-  ( ( f ` x ) .ih ( f ` y ) ) | 
						
							| 23 |  | cc0 |  |-  0 | 
						
							| 24 | 22 23 | wceq |  |-  ( ( f ` x ) .ih ( f ` y ) ) = 0 | 
						
							| 25 |  | chj |  |-  vH | 
						
							| 26 | 14 16 25 | co |  |-  ( x vH y ) | 
						
							| 27 | 26 7 | cfv |  |-  ( f ` ( x vH y ) ) | 
						
							| 28 |  | cva |  |-  +h | 
						
							| 29 | 19 21 28 | co |  |-  ( ( f ` x ) +h ( f ` y ) ) | 
						
							| 30 | 27 29 | wceq |  |-  ( f ` ( x vH y ) ) = ( ( f ` x ) +h ( f ` y ) ) | 
						
							| 31 | 24 30 | wa |  |-  ( ( ( f ` x ) .ih ( f ` y ) ) = 0 /\ ( f ` ( x vH y ) ) = ( ( f ` x ) +h ( f ` y ) ) ) | 
						
							| 32 | 18 31 | wi |  |-  ( x C_ ( _|_ ` y ) -> ( ( ( f ` x ) .ih ( f ` y ) ) = 0 /\ ( f ` ( x vH y ) ) = ( ( f ` x ) +h ( f ` y ) ) ) ) | 
						
							| 33 | 32 13 4 | wral |  |-  A. y e. CH ( x C_ ( _|_ ` y ) -> ( ( ( f ` x ) .ih ( f ` y ) ) = 0 /\ ( f ` ( x vH y ) ) = ( ( f ` x ) +h ( f ` y ) ) ) ) | 
						
							| 34 | 33 12 4 | wral |  |-  A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( ( ( f ` x ) .ih ( f ` y ) ) = 0 /\ ( f ` ( x vH y ) ) = ( ( f ` x ) +h ( f ` y ) ) ) ) | 
						
							| 35 | 11 34 | wa |  |-  ( ( normh ` ( f ` ~H ) ) = 1 /\ A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( ( ( f ` x ) .ih ( f ` y ) ) = 0 /\ ( f ` ( x vH y ) ) = ( ( f ` x ) +h ( f ` y ) ) ) ) ) | 
						
							| 36 | 35 1 5 | crab |  |-  { f e. ( ~H ^m CH ) | ( ( normh ` ( f ` ~H ) ) = 1 /\ A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( ( ( f ` x ) .ih ( f ` y ) ) = 0 /\ ( f ` ( x vH y ) ) = ( ( f ` x ) +h ( f ` y ) ) ) ) ) } | 
						
							| 37 | 0 36 | wceq |  |-  CHStates = { f e. ( ~H ^m CH ) | ( ( normh ` ( f ` ~H ) ) = 1 /\ A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( ( ( f ` x ) .ih ( f ` y ) ) = 0 /\ ( f ` ( x vH y ) ) = ( ( f ` x ) +h ( f ` y ) ) ) ) ) } |