Metamath Proof Explorer


Definition df-hst

Description: Define the set of complex Hilbert-space-valued states on a Hilbert lattice. Definition of CH-states in Mayet3 p. 9. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hst CHStates = f C | norm f = 1 x C y C x y f x ih f y = 0 f x y = f x + f y

Detailed syntax breakdown

Step Hyp Ref Expression
0 chst class CHStates
1 vf setvar f
2 chba class
3 cmap class 𝑚
4 cch class C
5 2 4 3 co class C
6 cno class norm
7 1 cv setvar f
8 2 7 cfv class f
9 8 6 cfv class norm f
10 c1 class 1
11 9 10 wceq wff norm f = 1
12 vx setvar x
13 vy setvar y
14 12 cv setvar x
15 cort class
16 13 cv setvar y
17 16 15 cfv class y
18 14 17 wss wff x y
19 14 7 cfv class f x
20 csp class ih
21 16 7 cfv class f y
22 19 21 20 co class f x ih f y
23 cc0 class 0
24 22 23 wceq wff f x ih f y = 0
25 chj class
26 14 16 25 co class x y
27 26 7 cfv class f x y
28 cva class +
29 19 21 28 co class f x + f y
30 27 29 wceq wff f x y = f x + f y
31 24 30 wa wff f x ih f y = 0 f x y = f x + f y
32 18 31 wi wff x y f x ih f y = 0 f x y = f x + f y
33 32 13 4 wral wff y C x y f x ih f y = 0 f x y = f x + f y
34 33 12 4 wral wff x C y C x y f x ih f y = 0 f x y = f x + f y
35 11 34 wa wff norm f = 1 x C y C x y f x ih f y = 0 f x y = f x + f y
36 35 1 5 crab class f C | norm f = 1 x C y C x y f x ih f y = 0 f x y = f x + f y
37 0 36 wceq wff CHStates = f C | norm f = 1 x C y C x y f x ih f y = 0 f x y = f x + f y