Metamath Proof Explorer


Theorem isst

Description: Property of a state. (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion isst SStatesS:C01S=1xCyCxySxy=Sx+Sy

Proof

Step Hyp Ref Expression
1 ovex 01V
2 chex CV
3 1 2 elmap S01CS:C01
4 3 anbi1i S01CS=1xCyCxySxy=Sx+SyS:C01S=1xCyCxySxy=Sx+Sy
5 fveq1 f=Sf=S
6 5 eqeq1d f=Sf=1S=1
7 fveq1 f=Sfxy=Sxy
8 fveq1 f=Sfx=Sx
9 fveq1 f=Sfy=Sy
10 8 9 oveq12d f=Sfx+fy=Sx+Sy
11 7 10 eqeq12d f=Sfxy=fx+fySxy=Sx+Sy
12 11 imbi2d f=Sxyfxy=fx+fyxySxy=Sx+Sy
13 12 2ralbidv f=SxCyCxyfxy=fx+fyxCyCxySxy=Sx+Sy
14 6 13 anbi12d f=Sf=1xCyCxyfxy=fx+fyS=1xCyCxySxy=Sx+Sy
15 df-st States=f01C|f=1xCyCxyfxy=fx+fy
16 14 15 elrab2 SStatesS01CS=1xCyCxySxy=Sx+Sy
17 3anass S:C01S=1xCyCxySxy=Sx+SyS:C01S=1xCyCxySxy=Sx+Sy
18 4 16 17 3bitr4i SStatesS:C01S=1xCyCxySxy=Sx+Sy