Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
2 |
|
chex |
⊢ Cℋ ∈ V |
3 |
1 2
|
elmap |
⊢ ( 𝑆 ∈ ( ( 0 [,] 1 ) ↑m Cℋ ) ↔ 𝑆 : Cℋ ⟶ ( 0 [,] 1 ) ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑆 ∈ ( ( 0 [,] 1 ) ↑m Cℋ ) ∧ ( ( 𝑆 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑆 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝑆 : Cℋ ⟶ ( 0 [,] 1 ) ∧ ( ( 𝑆 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |
5 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ ℋ ) = ( 𝑆 ‘ ℋ ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑓 ‘ ℋ ) = 1 ↔ ( 𝑆 ‘ ℋ ) = 1 ) ) |
7 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) ) |
8 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
9 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
10 |
8 9
|
oveq12d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑆 ‘ 𝑦 ) ) ) |
11 |
7 10
|
eqeq12d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑆 ‘ 𝑦 ) ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
13 |
12
|
2ralbidv |
⊢ ( 𝑓 = 𝑆 → ( ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
14 |
6 13
|
anbi12d |
⊢ ( 𝑓 = 𝑆 → ( ( ( 𝑓 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑆 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |
15 |
|
df-st |
⊢ States = { 𝑓 ∈ ( ( 0 [,] 1 ) ↑m Cℋ ) ∣ ( ( 𝑓 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } |
16 |
14 15
|
elrab2 |
⊢ ( 𝑆 ∈ States ↔ ( 𝑆 ∈ ( ( 0 [,] 1 ) ↑m Cℋ ) ∧ ( ( 𝑆 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |
17 |
|
3anass |
⊢ ( ( 𝑆 : Cℋ ⟶ ( 0 [,] 1 ) ∧ ( 𝑆 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑆 ‘ 𝑦 ) ) ) ) ↔ ( 𝑆 : Cℋ ⟶ ( 0 [,] 1 ) ∧ ( ( 𝑆 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |
18 |
4 16 17
|
3bitr4i |
⊢ ( 𝑆 ∈ States ↔ ( 𝑆 : Cℋ ⟶ ( 0 [,] 1 ) ∧ ( 𝑆 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑆 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑆 ‘ 𝑦 ) ) ) ) ) |