| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cst |
⊢ States |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cc0 |
⊢ 0 |
| 3 |
|
cicc |
⊢ [,] |
| 4 |
|
c1 |
⊢ 1 |
| 5 |
2 4 3
|
co |
⊢ ( 0 [,] 1 ) |
| 6 |
|
cmap |
⊢ ↑m |
| 7 |
|
cch |
⊢ Cℋ |
| 8 |
5 7 6
|
co |
⊢ ( ( 0 [,] 1 ) ↑m Cℋ ) |
| 9 |
1
|
cv |
⊢ 𝑓 |
| 10 |
|
chba |
⊢ ℋ |
| 11 |
10 9
|
cfv |
⊢ ( 𝑓 ‘ ℋ ) |
| 12 |
11 4
|
wceq |
⊢ ( 𝑓 ‘ ℋ ) = 1 |
| 13 |
|
vx |
⊢ 𝑥 |
| 14 |
|
vy |
⊢ 𝑦 |
| 15 |
13
|
cv |
⊢ 𝑥 |
| 16 |
|
cort |
⊢ ⊥ |
| 17 |
14
|
cv |
⊢ 𝑦 |
| 18 |
17 16
|
cfv |
⊢ ( ⊥ ‘ 𝑦 ) |
| 19 |
15 18
|
wss |
⊢ 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) |
| 20 |
|
chj |
⊢ ∨ℋ |
| 21 |
15 17 20
|
co |
⊢ ( 𝑥 ∨ℋ 𝑦 ) |
| 22 |
21 9
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) |
| 23 |
15 9
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 24 |
|
caddc |
⊢ + |
| 25 |
17 9
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
| 26 |
23 25 24
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) |
| 27 |
22 26
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) |
| 28 |
19 27
|
wi |
⊢ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) |
| 29 |
28 14 7
|
wral |
⊢ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) |
| 30 |
29 13 7
|
wral |
⊢ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) |
| 31 |
12 30
|
wa |
⊢ ( ( 𝑓 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 32 |
31 1 8
|
crab |
⊢ { 𝑓 ∈ ( ( 0 [,] 1 ) ↑m Cℋ ) ∣ ( ( 𝑓 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } |
| 33 |
0 32
|
wceq |
⊢ States = { 𝑓 ∈ ( ( 0 [,] 1 ) ↑m Cℋ ) ∣ ( ( 𝑓 ‘ ℋ ) = 1 ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 ∨ℋ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } |