Metamath Proof Explorer


Definition df-st

Description: Define the set of states on a Hilbert lattice. Definition of Kalmbach p. 266. (Contributed by NM, 23-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion df-st States = { 𝑓 ∈ ( ( 0 [,] 1 ) ↑m C ) ∣ ( ( 𝑓 ‘ ℋ ) = 1 ∧ ∀ 𝑥C𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cst States
1 vf 𝑓
2 cc0 0
3 cicc [,]
4 c1 1
5 2 4 3 co ( 0 [,] 1 )
6 cmap m
7 cch C
8 5 7 6 co ( ( 0 [,] 1 ) ↑m C )
9 1 cv 𝑓
10 chba
11 10 9 cfv ( 𝑓 ‘ ℋ )
12 11 4 wceq ( 𝑓 ‘ ℋ ) = 1
13 vx 𝑥
14 vy 𝑦
15 13 cv 𝑥
16 cort
17 14 cv 𝑦
18 17 16 cfv ( ⊥ ‘ 𝑦 )
19 15 18 wss 𝑥 ⊆ ( ⊥ ‘ 𝑦 )
20 chj
21 15 17 20 co ( 𝑥 𝑦 )
22 21 9 cfv ( 𝑓 ‘ ( 𝑥 𝑦 ) )
23 15 9 cfv ( 𝑓𝑥 )
24 caddc +
25 17 9 cfv ( 𝑓𝑦 )
26 23 25 24 co ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) )
27 22 26 wceq ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) )
28 19 27 wi ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) )
29 28 14 7 wral 𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) )
30 29 13 7 wral 𝑥C𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) )
31 12 30 wa ( ( 𝑓 ‘ ℋ ) = 1 ∧ ∀ 𝑥C𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) ) )
32 31 1 8 crab { 𝑓 ∈ ( ( 0 [,] 1 ) ↑m C ) ∣ ( ( 𝑓 ‘ ℋ ) = 1 ∧ ∀ 𝑥C𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) ) ) }
33 0 32 wceq States = { 𝑓 ∈ ( ( 0 [,] 1 ) ↑m C ) ∣ ( ( 𝑓 ‘ ℋ ) = 1 ∧ ∀ 𝑥C𝑦C ( 𝑥 ⊆ ( ⊥ ‘ 𝑦 ) → ( 𝑓 ‘ ( 𝑥 𝑦 ) ) = ( ( 𝑓𝑥 ) + ( 𝑓𝑦 ) ) ) ) }