| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cst | ⊢ States | 
						
							| 1 |  | vf | ⊢ 𝑓 | 
						
							| 2 |  | cc0 | ⊢ 0 | 
						
							| 3 |  | cicc | ⊢ [,] | 
						
							| 4 |  | c1 | ⊢ 1 | 
						
							| 5 | 2 4 3 | co | ⊢ ( 0 [,] 1 ) | 
						
							| 6 |  | cmap | ⊢  ↑m | 
						
							| 7 |  | cch | ⊢  Cℋ | 
						
							| 8 | 5 7 6 | co | ⊢ ( ( 0 [,] 1 )  ↑m   Cℋ  ) | 
						
							| 9 | 1 | cv | ⊢ 𝑓 | 
						
							| 10 |  | chba | ⊢  ℋ | 
						
							| 11 | 10 9 | cfv | ⊢ ( 𝑓 ‘  ℋ ) | 
						
							| 12 | 11 4 | wceq | ⊢ ( 𝑓 ‘  ℋ )  =  1 | 
						
							| 13 |  | vx | ⊢ 𝑥 | 
						
							| 14 |  | vy | ⊢ 𝑦 | 
						
							| 15 | 13 | cv | ⊢ 𝑥 | 
						
							| 16 |  | cort | ⊢ ⊥ | 
						
							| 17 | 14 | cv | ⊢ 𝑦 | 
						
							| 18 | 17 16 | cfv | ⊢ ( ⊥ ‘ 𝑦 ) | 
						
							| 19 | 15 18 | wss | ⊢ 𝑥  ⊆  ( ⊥ ‘ 𝑦 ) | 
						
							| 20 |  | chj | ⊢  ∨ℋ | 
						
							| 21 | 15 17 20 | co | ⊢ ( 𝑥  ∨ℋ  𝑦 ) | 
						
							| 22 | 21 9 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) ) | 
						
							| 23 | 15 9 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) | 
						
							| 24 |  | caddc | ⊢  + | 
						
							| 25 | 17 9 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) | 
						
							| 26 | 23 25 24 | co | ⊢ ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 27 | 22 26 | wceq | ⊢ ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 28 | 19 27 | wi | ⊢ ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 29 | 28 14 7 | wral | ⊢ ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 30 | 29 13 7 | wral | ⊢ ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 31 | 12 30 | wa | ⊢ ( ( 𝑓 ‘  ℋ )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 32 | 31 1 8 | crab | ⊢ { 𝑓  ∈  ( ( 0 [,] 1 )  ↑m   Cℋ  )  ∣  ( ( 𝑓 ‘  ℋ )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) ) } | 
						
							| 33 | 0 32 | wceq | ⊢ States  =  { 𝑓  ∈  ( ( 0 [,] 1 )  ↑m   Cℋ  )  ∣  ( ( 𝑓 ‘  ℋ )  =  1  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ 𝑦 )  →  ( 𝑓 ‘ ( 𝑥  ∨ℋ  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) ) } |