Step |
Hyp |
Ref |
Expression |
0 |
|
cst |
|- States |
1 |
|
vf |
|- f |
2 |
|
cc0 |
|- 0 |
3 |
|
cicc |
|- [,] |
4 |
|
c1 |
|- 1 |
5 |
2 4 3
|
co |
|- ( 0 [,] 1 ) |
6 |
|
cmap |
|- ^m |
7 |
|
cch |
|- CH |
8 |
5 7 6
|
co |
|- ( ( 0 [,] 1 ) ^m CH ) |
9 |
1
|
cv |
|- f |
10 |
|
chba |
|- ~H |
11 |
10 9
|
cfv |
|- ( f ` ~H ) |
12 |
11 4
|
wceq |
|- ( f ` ~H ) = 1 |
13 |
|
vx |
|- x |
14 |
|
vy |
|- y |
15 |
13
|
cv |
|- x |
16 |
|
cort |
|- _|_ |
17 |
14
|
cv |
|- y |
18 |
17 16
|
cfv |
|- ( _|_ ` y ) |
19 |
15 18
|
wss |
|- x C_ ( _|_ ` y ) |
20 |
|
chj |
|- vH |
21 |
15 17 20
|
co |
|- ( x vH y ) |
22 |
21 9
|
cfv |
|- ( f ` ( x vH y ) ) |
23 |
15 9
|
cfv |
|- ( f ` x ) |
24 |
|
caddc |
|- + |
25 |
17 9
|
cfv |
|- ( f ` y ) |
26 |
23 25 24
|
co |
|- ( ( f ` x ) + ( f ` y ) ) |
27 |
22 26
|
wceq |
|- ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) |
28 |
19 27
|
wi |
|- ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) |
29 |
28 14 7
|
wral |
|- A. y e. CH ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) |
30 |
29 13 7
|
wral |
|- A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) |
31 |
12 30
|
wa |
|- ( ( f ` ~H ) = 1 /\ A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) ) |
32 |
31 1 8
|
crab |
|- { f e. ( ( 0 [,] 1 ) ^m CH ) | ( ( f ` ~H ) = 1 /\ A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) ) } |
33 |
0 32
|
wceq |
|- States = { f e. ( ( 0 [,] 1 ) ^m CH ) | ( ( f ` ~H ) = 1 /\ A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) ) } |