| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cst |  |-  States | 
						
							| 1 |  | vf |  |-  f | 
						
							| 2 |  | cc0 |  |-  0 | 
						
							| 3 |  | cicc |  |-  [,] | 
						
							| 4 |  | c1 |  |-  1 | 
						
							| 5 | 2 4 3 | co |  |-  ( 0 [,] 1 ) | 
						
							| 6 |  | cmap |  |-  ^m | 
						
							| 7 |  | cch |  |-  CH | 
						
							| 8 | 5 7 6 | co |  |-  ( ( 0 [,] 1 ) ^m CH ) | 
						
							| 9 | 1 | cv |  |-  f | 
						
							| 10 |  | chba |  |-  ~H | 
						
							| 11 | 10 9 | cfv |  |-  ( f ` ~H ) | 
						
							| 12 | 11 4 | wceq |  |-  ( f ` ~H ) = 1 | 
						
							| 13 |  | vx |  |-  x | 
						
							| 14 |  | vy |  |-  y | 
						
							| 15 | 13 | cv |  |-  x | 
						
							| 16 |  | cort |  |-  _|_ | 
						
							| 17 | 14 | cv |  |-  y | 
						
							| 18 | 17 16 | cfv |  |-  ( _|_ ` y ) | 
						
							| 19 | 15 18 | wss |  |-  x C_ ( _|_ ` y ) | 
						
							| 20 |  | chj |  |-  vH | 
						
							| 21 | 15 17 20 | co |  |-  ( x vH y ) | 
						
							| 22 | 21 9 | cfv |  |-  ( f ` ( x vH y ) ) | 
						
							| 23 | 15 9 | cfv |  |-  ( f ` x ) | 
						
							| 24 |  | caddc |  |-  + | 
						
							| 25 | 17 9 | cfv |  |-  ( f ` y ) | 
						
							| 26 | 23 25 24 | co |  |-  ( ( f ` x ) + ( f ` y ) ) | 
						
							| 27 | 22 26 | wceq |  |-  ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) | 
						
							| 28 | 19 27 | wi |  |-  ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) | 
						
							| 29 | 28 14 7 | wral |  |-  A. y e. CH ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) | 
						
							| 30 | 29 13 7 | wral |  |-  A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) | 
						
							| 31 | 12 30 | wa |  |-  ( ( f ` ~H ) = 1 /\ A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) ) | 
						
							| 32 | 31 1 8 | crab |  |-  { f e. ( ( 0 [,] 1 ) ^m CH ) | ( ( f ` ~H ) = 1 /\ A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) ) } | 
						
							| 33 | 0 32 | wceq |  |-  States = { f e. ( ( 0 [,] 1 ) ^m CH ) | ( ( f ` ~H ) = 1 /\ A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( f ` ( x vH y ) ) = ( ( f ` x ) + ( f ` y ) ) ) ) } |