Metamath Proof Explorer


Definition df-st

Description: Define the set of states on a Hilbert lattice. Definition of Kalmbach p. 266. (Contributed by NM, 23-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion df-st States=f01C|f=1xCyCxyfxy=fx+fy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cst classStates
1 vf setvarf
2 cc0 class0
3 cicc class.
4 c1 class1
5 2 4 3 co class01
6 cmap class𝑚
7 cch classC
8 5 7 6 co class01C
9 1 cv setvarf
10 chba class
11 10 9 cfv classf
12 11 4 wceq wfff=1
13 vx setvarx
14 vy setvary
15 13 cv setvarx
16 cort class
17 14 cv setvary
18 17 16 cfv classy
19 15 18 wss wffxy
20 chj class
21 15 17 20 co classxy
22 21 9 cfv classfxy
23 15 9 cfv classfx
24 caddc class+
25 17 9 cfv classfy
26 23 25 24 co classfx+fy
27 22 26 wceq wfffxy=fx+fy
28 19 27 wi wffxyfxy=fx+fy
29 28 14 7 wral wffyCxyfxy=fx+fy
30 29 13 7 wral wffxCyCxyfxy=fx+fy
31 12 30 wa wfff=1xCyCxyfxy=fx+fy
32 31 1 8 crab classf01C|f=1xCyCxyfxy=fx+fy
33 0 32 wceq wffStates=f01C|f=1xCyCxyfxy=fx+fy