Metamath Proof Explorer


Theorem ishst

Description: Property of a complex Hilbert-space-valued state. Definition of CH-states in Mayet3 p. 9. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion ishst S CHStates S : C norm S = 1 x C y C x y S x ih S y = 0 S x y = S x + S y

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 chex C V
3 1 2 elmap S C S : C
4 3 anbi1i S C norm S = 1 x C y C x y S x ih S y = 0 S x y = S x + S y S : C norm S = 1 x C y C x y S x ih S y = 0 S x y = S x + S y
5 fveq1 f = S f = S
6 5 fveqeq2d f = S norm f = 1 norm S = 1
7 fveq1 f = S f x = S x
8 fveq1 f = S f y = S y
9 7 8 oveq12d f = S f x ih f y = S x ih S y
10 9 eqeq1d f = S f x ih f y = 0 S x ih S y = 0
11 fveq1 f = S f x y = S x y
12 7 8 oveq12d f = S f x + f y = S x + S y
13 11 12 eqeq12d f = S f x y = f x + f y S x y = S x + S y
14 10 13 anbi12d f = S f x ih f y = 0 f x y = f x + f y S x ih S y = 0 S x y = S x + S y
15 14 imbi2d f = S x y f x ih f y = 0 f x y = f x + f y x y S x ih S y = 0 S x y = S x + S y
16 15 2ralbidv f = S x C y C x y f x ih f y = 0 f x y = f x + f y x C y C x y S x ih S y = 0 S x y = S x + S y
17 6 16 anbi12d f = S norm f = 1 x C y C x y f x ih f y = 0 f x y = f x + f y norm S = 1 x C y C x y S x ih S y = 0 S x y = S x + S y
18 df-hst CHStates = f C | norm f = 1 x C y C x y f x ih f y = 0 f x y = f x + f y
19 17 18 elrab2 S CHStates S C norm S = 1 x C y C x y S x ih S y = 0 S x y = S x + S y
20 3anass S : C norm S = 1 x C y C x y S x ih S y = 0 S x y = S x + S y S : C norm S = 1 x C y C x y S x ih S y = 0 S x y = S x + S y
21 4 19 20 3bitr4i S CHStates S : C norm S = 1 x C y C x y S x ih S y = 0 S x y = S x + S y