Metamath Proof Explorer


Theorem ishst

Description: Property of a complex Hilbert-space-valued state. Definition of CH-states in Mayet3 p. 9. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion ishst SCHStatesS:CnormS=1xCyCxySxihSy=0Sxy=Sx+Sy

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 chex CV
3 1 2 elmap SCS:C
4 3 anbi1i SCnormS=1xCyCxySxihSy=0Sxy=Sx+SyS:CnormS=1xCyCxySxihSy=0Sxy=Sx+Sy
5 fveq1 f=Sf=S
6 5 fveqeq2d f=Snormf=1normS=1
7 fveq1 f=Sfx=Sx
8 fveq1 f=Sfy=Sy
9 7 8 oveq12d f=Sfxihfy=SxihSy
10 9 eqeq1d f=Sfxihfy=0SxihSy=0
11 fveq1 f=Sfxy=Sxy
12 7 8 oveq12d f=Sfx+fy=Sx+Sy
13 11 12 eqeq12d f=Sfxy=fx+fySxy=Sx+Sy
14 10 13 anbi12d f=Sfxihfy=0fxy=fx+fySxihSy=0Sxy=Sx+Sy
15 14 imbi2d f=Sxyfxihfy=0fxy=fx+fyxySxihSy=0Sxy=Sx+Sy
16 15 2ralbidv f=SxCyCxyfxihfy=0fxy=fx+fyxCyCxySxihSy=0Sxy=Sx+Sy
17 6 16 anbi12d f=Snormf=1xCyCxyfxihfy=0fxy=fx+fynormS=1xCyCxySxihSy=0Sxy=Sx+Sy
18 df-hst CHStates=fC|normf=1xCyCxyfxihfy=0fxy=fx+fy
19 17 18 elrab2 SCHStatesSCnormS=1xCyCxySxihSy=0Sxy=Sx+Sy
20 3anass S:CnormS=1xCyCxySxihSy=0Sxy=Sx+SyS:CnormS=1xCyCxySxihSy=0Sxy=Sx+Sy
21 4 19 20 3bitr4i SCHStatesS:CnormS=1xCyCxySxihSy=0Sxy=Sx+Sy