Metamath Proof Explorer


Definition df-hst

Description: Define the set of complex Hilbert-space-valued states on a Hilbert lattice. Definition of CH-states in Mayet3 p. 9. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hst CHStates=fC|normf=1xCyCxyfxihfy=0fxy=fx+fy

Detailed syntax breakdown

Step Hyp Ref Expression
0 chst classCHStates
1 vf setvarf
2 chba class
3 cmap class𝑚
4 cch classC
5 2 4 3 co classC
6 cno classnorm
7 1 cv setvarf
8 2 7 cfv classf
9 8 6 cfv classnormf
10 c1 class1
11 9 10 wceq wffnormf=1
12 vx setvarx
13 vy setvary
14 12 cv setvarx
15 cort class
16 13 cv setvary
17 16 15 cfv classy
18 14 17 wss wffxy
19 14 7 cfv classfx
20 csp classih
21 16 7 cfv classfy
22 19 21 20 co classfxihfy
23 cc0 class0
24 22 23 wceq wfffxihfy=0
25 chj class
26 14 16 25 co classxy
27 26 7 cfv classfxy
28 cva class+
29 19 21 28 co classfx+fy
30 27 29 wceq wfffxy=fx+fy
31 24 30 wa wfffxihfy=0fxy=fx+fy
32 18 31 wi wffxyfxihfy=0fxy=fx+fy
33 32 13 4 wral wffyCxyfxihfy=0fxy=fx+fy
34 33 12 4 wral wffxCyCxyfxihfy=0fxy=fx+fy
35 11 34 wa wffnormf=1xCyCxyfxihfy=0fxy=fx+fy
36 35 1 5 crab classfC|normf=1xCyCxyfxihfy=0fxy=fx+fy
37 0 36 wceq wffCHStates=fC|normf=1xCyCxyfxihfy=0fxy=fx+fy