Metamath Proof Explorer


Theorem hstosum

Description: Orthogonal sum property of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstosum ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) ) → ( 𝑆 ‘ ( 𝐴 𝐵 ) ) = ( ( 𝑆𝐴 ) + ( 𝑆𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 hstel2 ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) ) → ( ( ( 𝑆𝐴 ) ·ih ( 𝑆𝐵 ) ) = 0 ∧ ( 𝑆 ‘ ( 𝐴 𝐵 ) ) = ( ( 𝑆𝐴 ) + ( 𝑆𝐵 ) ) ) )
2 1 simprd ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) ) → ( 𝑆 ‘ ( 𝐴 𝐵 ) ) = ( ( 𝑆𝐴 ) + ( 𝑆𝐵 ) ) )