Step |
Hyp |
Ref |
Expression |
1 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
2 |
1
|
adantl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
3 |
|
chsh |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) |
4 |
|
shococss |
⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
7 |
2 6
|
jca |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
8 |
|
hstosum |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
9 |
7 8
|
mpdan |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
10 |
|
chjo |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ℋ ) |
11 |
10
|
fveq2d |
⊢ ( 𝐴 ∈ Cℋ → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ℋ ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ℋ ) ) |
13 |
9 12
|
eqtr3d |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ℋ ) ) |