Step |
Hyp |
Ref |
Expression |
1 |
|
hstoc |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ℋ ) ) |
2 |
1
|
fveq2d |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( normℎ ‘ ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) = ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) ) |
3 |
2
|
oveq1d |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ↑ 2 ) = ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) ↑ 2 ) ) |
4 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) |
5 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
6 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) |
7 |
5 6
|
sylan2 |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) |
8 |
4 7
|
jca |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) ) |
9 |
5
|
adantl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
10 |
|
chsh |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) |
11 |
|
shococss |
⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
14 |
9 13
|
jca |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
15 |
|
hstorth |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) → ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 ) |
16 |
14 15
|
mpdan |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 ) |
17 |
|
normpyth |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) → ( ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 → ( ( normℎ ‘ ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) ) |
18 |
8 16 17
|
sylc |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) |
19 |
|
hst1a |
⊢ ( 𝑆 ∈ CHStates → ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ) |
20 |
19
|
oveq1d |
⊢ ( 𝑆 ∈ CHStates → ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
21 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
22 |
20 21
|
eqtrdi |
⊢ ( 𝑆 ∈ CHStates → ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) ↑ 2 ) = 1 ) |
23 |
22
|
adantr |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) ↑ 2 ) = 1 ) |
24 |
3 18 23
|
3eqtr3d |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) = 1 ) |