| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstoc | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  ( 𝑆 ‘  ℋ ) ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( normℎ ‘ ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) )  =  ( normℎ ‘ ( 𝑆 ‘  ℋ ) ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ↑ 2 )  =  ( ( normℎ ‘ ( 𝑆 ‘  ℋ ) ) ↑ 2 ) ) | 
						
							| 4 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( 𝑆 ‘ 𝐴 )  ∈   ℋ ) | 
						
							| 5 |  | choccl | ⊢ ( 𝐴  ∈   Cℋ   →  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  ) | 
						
							| 6 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  )  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈   ℋ ) | 
						
							| 7 | 5 6 | sylan2 | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈   ℋ ) | 
						
							| 8 | 4 7 | jca | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( 𝑆 ‘ 𝐴 )  ∈   ℋ  ∧  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈   ℋ ) ) | 
						
							| 9 | 5 | adantl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  ) | 
						
							| 10 |  | chsh | ⊢ ( 𝐴  ∈   Cℋ   →  𝐴  ∈   Sℋ  ) | 
						
							| 11 |  | shococss | ⊢ ( 𝐴  ∈   Sℋ   →  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝐴  ∈   Cℋ   →  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 14 | 9 13 | jca | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( ⊥ ‘ 𝐴 )  ∈   Cℋ   ∧  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) | 
						
							| 15 |  | hstorth | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( ( ⊥ ‘ 𝐴 )  ∈   Cℋ   ∧  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )  →  ( ( 𝑆 ‘ 𝐴 )  ·ih  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  0 ) | 
						
							| 16 | 14 15 | mpdan | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( 𝑆 ‘ 𝐴 )  ·ih  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  0 ) | 
						
							| 17 |  | normpyth | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈   ℋ  ∧  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈   ℋ )  →  ( ( ( 𝑆 ‘ 𝐴 )  ·ih  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  0  →  ( ( normℎ ‘ ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ↑ 2 )  =  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) ) | 
						
							| 18 | 8 16 17 | sylc | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ↑ 2 )  =  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) | 
						
							| 19 |  | hst1a | ⊢ ( 𝑆  ∈  CHStates  →  ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1 ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑆  ∈  CHStates  →  ( ( normℎ ‘ ( 𝑆 ‘  ℋ ) ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 21 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 22 | 20 21 | eqtrdi | ⊢ ( 𝑆  ∈  CHStates  →  ( ( normℎ ‘ ( 𝑆 ‘  ℋ ) ) ↑ 2 )  =  1 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘  ℋ ) ) ↑ 2 )  =  1 ) | 
						
							| 24 | 3 18 23 | 3eqtr3d | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) )  =  1 ) |