Metamath Proof Explorer


Theorem hstnmoc

Description: Sum of norms of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstnmoc ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) = 1 )

Proof

Step Hyp Ref Expression
1 hstoc ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ℋ ) )
2 1 fveq2d ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( norm ‘ ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) = ( norm ‘ ( 𝑆 ‘ ℋ ) ) )
3 2 oveq1d ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ↑ 2 ) = ( ( norm ‘ ( 𝑆 ‘ ℋ ) ) ↑ 2 ) )
4 hstcl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( 𝑆𝐴 ) ∈ ℋ )
5 choccl ( 𝐴C → ( ⊥ ‘ 𝐴 ) ∈ C )
6 hstcl ( ( 𝑆 ∈ CHStates ∧ ( ⊥ ‘ 𝐴 ) ∈ C ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ )
7 5 6 sylan2 ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ )
8 4 7 jca ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( 𝑆𝐴 ) ∈ ℋ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) )
9 5 adantl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ⊥ ‘ 𝐴 ) ∈ C )
10 chsh ( 𝐴C𝐴S )
11 shococss ( 𝐴S𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
12 10 11 syl ( 𝐴C𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
13 12 adantl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
14 9 13 jca ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( ⊥ ‘ 𝐴 ) ∈ C𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )
15 hstorth ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( ( ⊥ ‘ 𝐴 ) ∈ C𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) → ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 )
16 14 15 mpdan ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 )
17 normpyth ( ( ( 𝑆𝐴 ) ∈ ℋ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) → ( ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 → ( ( norm ‘ ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ↑ 2 ) = ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) )
18 8 16 17 sylc ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ↑ 2 ) = ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) )
19 hst1a ( 𝑆 ∈ CHStates → ( norm ‘ ( 𝑆 ‘ ℋ ) ) = 1 )
20 19 oveq1d ( 𝑆 ∈ CHStates → ( ( norm ‘ ( 𝑆 ‘ ℋ ) ) ↑ 2 ) = ( 1 ↑ 2 ) )
21 sq1 ( 1 ↑ 2 ) = 1
22 20 21 eqtrdi ( 𝑆 ∈ CHStates → ( ( norm ‘ ( 𝑆 ‘ ℋ ) ) ↑ 2 ) = 1 )
23 22 adantr ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆 ‘ ℋ ) ) ↑ 2 ) = 1 )
24 3 18 23 3eqtr3d ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) = 1 )