| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstoc |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) ) | 
						
							| 2 | 1 | fveq2d |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) = ( normh ` ( S ` ~H ) ) ) | 
						
							| 3 | 2 | oveq1d |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) ^ 2 ) = ( ( normh ` ( S ` ~H ) ) ^ 2 ) ) | 
						
							| 4 |  | hstcl |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( S ` A ) e. ~H ) | 
						
							| 5 |  | choccl |  |-  ( A e. CH -> ( _|_ ` A ) e. CH ) | 
						
							| 6 |  | hstcl |  |-  ( ( S e. CHStates /\ ( _|_ ` A ) e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) | 
						
							| 7 | 5 6 | sylan2 |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) | 
						
							| 8 | 4 7 | jca |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) e. ~H /\ ( S ` ( _|_ ` A ) ) e. ~H ) ) | 
						
							| 9 | 5 | adantl |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( _|_ ` A ) e. CH ) | 
						
							| 10 |  | chsh |  |-  ( A e. CH -> A e. SH ) | 
						
							| 11 |  | shococss |  |-  ( A e. SH -> A C_ ( _|_ ` ( _|_ ` A ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( A e. CH -> A C_ ( _|_ ` ( _|_ ` A ) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( S e. CHStates /\ A e. CH ) -> A C_ ( _|_ ` ( _|_ ` A ) ) ) | 
						
							| 14 | 9 13 | jca |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( _|_ ` A ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) ) | 
						
							| 15 |  | hstorth |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( ( _|_ ` A ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) ) -> ( ( S ` A ) .ih ( S ` ( _|_ ` A ) ) ) = 0 ) | 
						
							| 16 | 14 15 | mpdan |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) .ih ( S ` ( _|_ ` A ) ) ) = 0 ) | 
						
							| 17 |  | normpyth |  |-  ( ( ( S ` A ) e. ~H /\ ( S ` ( _|_ ` A ) ) e. ~H ) -> ( ( ( S ` A ) .ih ( S ` ( _|_ ` A ) ) ) = 0 -> ( ( normh ` ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) ^ 2 ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) ) ) | 
						
							| 18 | 8 16 17 | sylc |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) ^ 2 ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) ) | 
						
							| 19 |  | hst1a |  |-  ( S e. CHStates -> ( normh ` ( S ` ~H ) ) = 1 ) | 
						
							| 20 | 19 | oveq1d |  |-  ( S e. CHStates -> ( ( normh ` ( S ` ~H ) ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 21 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 22 | 20 21 | eqtrdi |  |-  ( S e. CHStates -> ( ( normh ` ( S ` ~H ) ) ^ 2 ) = 1 ) | 
						
							| 23 | 22 | adantr |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` ~H ) ) ^ 2 ) = 1 ) | 
						
							| 24 | 3 18 23 | 3eqtr3d |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) = 1 ) |