Metamath Proof Explorer


Theorem hstoc

Description: Sum of a Hilbert-space-valued state of a lattice element and its orthocomplement. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstoc
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) )

Proof

Step Hyp Ref Expression
1 choccl
 |-  ( A e. CH -> ( _|_ ` A ) e. CH )
2 1 adantl
 |-  ( ( S e. CHStates /\ A e. CH ) -> ( _|_ ` A ) e. CH )
3 chsh
 |-  ( A e. CH -> A e. SH )
4 shococss
 |-  ( A e. SH -> A C_ ( _|_ ` ( _|_ ` A ) ) )
5 3 4 syl
 |-  ( A e. CH -> A C_ ( _|_ ` ( _|_ ` A ) ) )
6 5 adantl
 |-  ( ( S e. CHStates /\ A e. CH ) -> A C_ ( _|_ ` ( _|_ ` A ) ) )
7 2 6 jca
 |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( _|_ ` A ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) )
8 hstosum
 |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( ( _|_ ` A ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) ) -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) )
9 7 8 mpdan
 |-  ( ( S e. CHStates /\ A e. CH ) -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) )
10 chjo
 |-  ( A e. CH -> ( A vH ( _|_ ` A ) ) = ~H )
11 10 fveq2d
 |-  ( A e. CH -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( S ` ~H ) )
12 11 adantl
 |-  ( ( S e. CHStates /\ A e. CH ) -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( S ` ~H ) )
13 9 12 eqtr3d
 |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) )