| Step |
Hyp |
Ref |
Expression |
| 1 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
| 2 |
1
|
adantl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( _|_ ` A ) e. CH ) |
| 3 |
|
chsh |
|- ( A e. CH -> A e. SH ) |
| 4 |
|
shococss |
|- ( A e. SH -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 5 |
3 4
|
syl |
|- ( A e. CH -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 6 |
5
|
adantl |
|- ( ( S e. CHStates /\ A e. CH ) -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 7 |
2 6
|
jca |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( _|_ ` A ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) ) |
| 8 |
|
hstosum |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( ( _|_ ` A ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) ) -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) |
| 9 |
7 8
|
mpdan |
|- ( ( S e. CHStates /\ A e. CH ) -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) |
| 10 |
|
chjo |
|- ( A e. CH -> ( A vH ( _|_ ` A ) ) = ~H ) |
| 11 |
10
|
fveq2d |
|- ( A e. CH -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( S ` ~H ) ) |
| 12 |
11
|
adantl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( S ` ~H ) ) |
| 13 |
9 12
|
eqtr3d |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) ) |