| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hvnegdi.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
hvnegdi.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
|
hvaddcan.3 |
⊢ 𝐶 ∈ ℋ |
| 4 |
1 2
|
hvsubvali |
⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 5 |
4
|
eqeq1i |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐶 ) |
| 6 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 7 |
6 2
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
| 8 |
2 1 7
|
hvadd12i |
⊢ ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 9 |
2
|
hvnegidi |
⊢ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ |
| 10 |
9
|
oveq2i |
⊢ ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ 0ℎ ) |
| 11 |
|
ax-hvaddid |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 0ℎ ) = 𝐴 ) |
| 12 |
1 11
|
ax-mp |
⊢ ( 𝐴 +ℎ 0ℎ ) = 𝐴 |
| 13 |
8 10 12
|
3eqtri |
⊢ ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = 𝐴 |
| 14 |
13
|
eqeq1i |
⊢ ( ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐵 +ℎ 𝐶 ) ↔ 𝐴 = ( 𝐵 +ℎ 𝐶 ) ) |
| 15 |
1 7
|
hvaddcli |
⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ ℋ |
| 16 |
2 15 3
|
hvaddcani |
⊢ ( ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐵 +ℎ 𝐶 ) ↔ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐶 ) |
| 17 |
|
eqcom |
⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) |
| 18 |
14 16 17
|
3bitr3i |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) |
| 19 |
5 18
|
bitri |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) |