| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hvnegdi.1 |
|- A e. ~H |
| 2 |
|
hvnegdi.2 |
|- B e. ~H |
| 3 |
|
hvaddcan.3 |
|- C e. ~H |
| 4 |
1 2
|
hvsubvali |
|- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 5 |
4
|
eqeq1i |
|- ( ( A -h B ) = C <-> ( A +h ( -u 1 .h B ) ) = C ) |
| 6 |
|
neg1cn |
|- -u 1 e. CC |
| 7 |
6 2
|
hvmulcli |
|- ( -u 1 .h B ) e. ~H |
| 8 |
2 1 7
|
hvadd12i |
|- ( B +h ( A +h ( -u 1 .h B ) ) ) = ( A +h ( B +h ( -u 1 .h B ) ) ) |
| 9 |
2
|
hvnegidi |
|- ( B +h ( -u 1 .h B ) ) = 0h |
| 10 |
9
|
oveq2i |
|- ( A +h ( B +h ( -u 1 .h B ) ) ) = ( A +h 0h ) |
| 11 |
|
ax-hvaddid |
|- ( A e. ~H -> ( A +h 0h ) = A ) |
| 12 |
1 11
|
ax-mp |
|- ( A +h 0h ) = A |
| 13 |
8 10 12
|
3eqtri |
|- ( B +h ( A +h ( -u 1 .h B ) ) ) = A |
| 14 |
13
|
eqeq1i |
|- ( ( B +h ( A +h ( -u 1 .h B ) ) ) = ( B +h C ) <-> A = ( B +h C ) ) |
| 15 |
1 7
|
hvaddcli |
|- ( A +h ( -u 1 .h B ) ) e. ~H |
| 16 |
2 15 3
|
hvaddcani |
|- ( ( B +h ( A +h ( -u 1 .h B ) ) ) = ( B +h C ) <-> ( A +h ( -u 1 .h B ) ) = C ) |
| 17 |
|
eqcom |
|- ( A = ( B +h C ) <-> ( B +h C ) = A ) |
| 18 |
14 16 17
|
3bitr3i |
|- ( ( A +h ( -u 1 .h B ) ) = C <-> ( B +h C ) = A ) |
| 19 |
5 18
|
bitri |
|- ( ( A -h B ) = C <-> ( B +h C ) = A ) |