Description: Domain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idafval.i | ⊢ 𝐼 = ( Ida ‘ 𝐶 ) | |
| idafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| idafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| idahom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | idadm | ⊢ ( 𝜑 → ( doma ‘ ( 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idafval.i | ⊢ 𝐼 = ( Ida ‘ 𝐶 ) | |
| 2 | idafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | idafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | idahom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | eqid | ⊢ ( Homa ‘ 𝐶 ) = ( Homa ‘ 𝐶 ) | |
| 6 | 1 2 3 4 5 | idahom | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝑋 ( Homa ‘ 𝐶 ) 𝑋 ) ) |
| 7 | 5 | homadm | ⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ ( 𝑋 ( Homa ‘ 𝐶 ) 𝑋 ) → ( doma ‘ ( 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → ( doma ‘ ( 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |