Metamath Proof Explorer


Theorem idahom

Description: Domain and codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i 𝐼 = ( Ida𝐶 )
idafval.b 𝐵 = ( Base ‘ 𝐶 )
idafval.c ( 𝜑𝐶 ∈ Cat )
idahom.x ( 𝜑𝑋𝐵 )
idahom.h 𝐻 = ( Homa𝐶 )
Assertion idahom ( 𝜑 → ( 𝐼𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) )

Proof

Step Hyp Ref Expression
1 idafval.i 𝐼 = ( Ida𝐶 )
2 idafval.b 𝐵 = ( Base ‘ 𝐶 )
3 idafval.c ( 𝜑𝐶 ∈ Cat )
4 idahom.x ( 𝜑𝑋𝐵 )
5 idahom.h 𝐻 = ( Homa𝐶 )
6 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
7 1 2 3 6 4 idaval ( 𝜑 → ( 𝐼𝑋 ) = ⟨ 𝑋 , 𝑋 , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ⟩ )
8 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
9 2 8 6 3 4 catidcl ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) )
10 5 2 3 8 4 4 9 elhomai2 ( 𝜑 → ⟨ 𝑋 , 𝑋 , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ⟩ ∈ ( 𝑋 𝐻 𝑋 ) )
11 7 10 eqeltrd ( 𝜑 → ( 𝐼𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) )