Step |
Hyp |
Ref |
Expression |
1 |
|
idafval.i |
⊢ 𝐼 = ( Ida ‘ 𝐶 ) |
2 |
|
idafval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
idafval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
idahom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
idahom.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
7 |
1 2 3 6 4
|
idaval |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) = 〈 𝑋 , 𝑋 , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
2 8 6 3 4
|
catidcl |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
10 |
5 2 3 8 4 4 9
|
elhomai2 |
⊢ ( 𝜑 → 〈 𝑋 , 𝑋 , ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) 〉 ∈ ( 𝑋 𝐻 𝑋 ) ) |
11 |
7 10
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |