Metamath Proof Explorer


Theorem idahom

Description: Domain and codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i I = Id a C
idafval.b B = Base C
idafval.c φ C Cat
idahom.x φ X B
idahom.h H = Hom a C
Assertion idahom φ I X X H X

Proof

Step Hyp Ref Expression
1 idafval.i I = Id a C
2 idafval.b B = Base C
3 idafval.c φ C Cat
4 idahom.x φ X B
5 idahom.h H = Hom a C
6 eqid Id C = Id C
7 1 2 3 6 4 idaval φ I X = X X Id C X
8 eqid Hom C = Hom C
9 2 8 6 3 4 catidcl φ Id C X X Hom C X
10 5 2 3 8 4 4 9 elhomai2 φ X X Id C X X H X
11 7 10 eqeltrd φ I X X H X