Database
BASIC CATEGORY THEORY
Arrows (disjointified hom-sets)
Identity and composition for arrows
idahom
Next ⟩
idadm
Metamath Proof Explorer
Ascii
Unicode
Theorem
idahom
Description:
Domain and codomain of the identity arrow.
(Contributed by
Mario Carneiro
, 11-Jan-2017)
Ref
Expression
Hypotheses
idafval.i
⊢
I
=
Id
a
⁡
C
idafval.b
⊢
B
=
Base
C
idafval.c
⊢
φ
→
C
∈
Cat
idahom.x
⊢
φ
→
X
∈
B
idahom.h
⊢
H
=
Hom
a
⁡
C
Assertion
idahom
⊢
φ
→
I
⁡
X
∈
X
H
X
Proof
Step
Hyp
Ref
Expression
1
idafval.i
⊢
I
=
Id
a
⁡
C
2
idafval.b
⊢
B
=
Base
C
3
idafval.c
⊢
φ
→
C
∈
Cat
4
idahom.x
⊢
φ
→
X
∈
B
5
idahom.h
⊢
H
=
Hom
a
⁡
C
6
eqid
⊢
Id
⁡
C
=
Id
⁡
C
7
1
2
3
6
4
idaval
⊢
φ
→
I
⁡
X
=
X
X
Id
⁡
C
⁡
X
8
eqid
⊢
Hom
⁡
C
=
Hom
⁡
C
9
2
8
6
3
4
catidcl
⊢
φ
→
Id
⁡
C
⁡
X
∈
X
Hom
⁡
C
X
10
5
2
3
8
4
4
9
elhomai2
⊢
φ
→
X
X
Id
⁡
C
⁡
X
∈
X
H
X
11
7
10
eqeltrd
⊢
φ
→
I
⁡
X
∈
X
H
X