Step |
Hyp |
Ref |
Expression |
1 |
|
idafval.i |
|- I = ( IdA ` C ) |
2 |
|
idafval.b |
|- B = ( Base ` C ) |
3 |
|
idafval.c |
|- ( ph -> C e. Cat ) |
4 |
|
idahom.x |
|- ( ph -> X e. B ) |
5 |
|
idahom.h |
|- H = ( HomA ` C ) |
6 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
7 |
1 2 3 6 4
|
idaval |
|- ( ph -> ( I ` X ) = <. X , X , ( ( Id ` C ) ` X ) >. ) |
8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
9 |
2 8 6 3 4
|
catidcl |
|- ( ph -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) |
10 |
5 2 3 8 4 4 9
|
elhomai2 |
|- ( ph -> <. X , X , ( ( Id ` C ) ` X ) >. e. ( X H X ) ) |
11 |
7 10
|
eqeltrd |
|- ( ph -> ( I ` X ) e. ( X H X ) ) |