Metamath Proof Explorer


Theorem idahom

Description: Domain and codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i
|- I = ( IdA ` C )
idafval.b
|- B = ( Base ` C )
idafval.c
|- ( ph -> C e. Cat )
idahom.x
|- ( ph -> X e. B )
idahom.h
|- H = ( HomA ` C )
Assertion idahom
|- ( ph -> ( I ` X ) e. ( X H X ) )

Proof

Step Hyp Ref Expression
1 idafval.i
 |-  I = ( IdA ` C )
2 idafval.b
 |-  B = ( Base ` C )
3 idafval.c
 |-  ( ph -> C e. Cat )
4 idahom.x
 |-  ( ph -> X e. B )
5 idahom.h
 |-  H = ( HomA ` C )
6 eqid
 |-  ( Id ` C ) = ( Id ` C )
7 1 2 3 6 4 idaval
 |-  ( ph -> ( I ` X ) = <. X , X , ( ( Id ` C ) ` X ) >. )
8 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
9 2 8 6 3 4 catidcl
 |-  ( ph -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) )
10 5 2 3 8 4 4 9 elhomai2
 |-  ( ph -> <. X , X , ( ( Id ` C ) ` X ) >. e. ( X H X ) )
11 7 10 eqeltrd
 |-  ( ph -> ( I ` X ) e. ( X H X ) )