Metamath Proof Explorer


Theorem idaval

Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i
|- I = ( IdA ` C )
idafval.b
|- B = ( Base ` C )
idafval.c
|- ( ph -> C e. Cat )
idafval.1
|- .1. = ( Id ` C )
idaval.x
|- ( ph -> X e. B )
Assertion idaval
|- ( ph -> ( I ` X ) = <. X , X , ( .1. ` X ) >. )

Proof

Step Hyp Ref Expression
1 idafval.i
 |-  I = ( IdA ` C )
2 idafval.b
 |-  B = ( Base ` C )
3 idafval.c
 |-  ( ph -> C e. Cat )
4 idafval.1
 |-  .1. = ( Id ` C )
5 idaval.x
 |-  ( ph -> X e. B )
6 1 2 3 4 idafval
 |-  ( ph -> I = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) )
7 simpr
 |-  ( ( ph /\ x = X ) -> x = X )
8 7 fveq2d
 |-  ( ( ph /\ x = X ) -> ( .1. ` x ) = ( .1. ` X ) )
9 7 7 8 oteq123d
 |-  ( ( ph /\ x = X ) -> <. x , x , ( .1. ` x ) >. = <. X , X , ( .1. ` X ) >. )
10 otex
 |-  <. X , X , ( .1. ` X ) >. e. _V
11 10 a1i
 |-  ( ph -> <. X , X , ( .1. ` X ) >. e. _V )
12 6 9 5 11 fvmptd
 |-  ( ph -> ( I ` X ) = <. X , X , ( .1. ` X ) >. )