Step |
Hyp |
Ref |
Expression |
1 |
|
idafval.i |
|- I = ( IdA ` C ) |
2 |
|
idafval.b |
|- B = ( Base ` C ) |
3 |
|
idafval.c |
|- ( ph -> C e. Cat ) |
4 |
|
idafval.1 |
|- .1. = ( Id ` C ) |
5 |
|
idaval.x |
|- ( ph -> X e. B ) |
6 |
1 2 3 4
|
idafval |
|- ( ph -> I = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) |
7 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
8 |
7
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( .1. ` x ) = ( .1. ` X ) ) |
9 |
7 7 8
|
oteq123d |
|- ( ( ph /\ x = X ) -> <. x , x , ( .1. ` x ) >. = <. X , X , ( .1. ` X ) >. ) |
10 |
|
otex |
|- <. X , X , ( .1. ` X ) >. e. _V |
11 |
10
|
a1i |
|- ( ph -> <. X , X , ( .1. ` X ) >. e. _V ) |
12 |
6 9 5 11
|
fvmptd |
|- ( ph -> ( I ` X ) = <. X , X , ( .1. ` X ) >. ) |